Mardi 26 Novembre 2013 : 7^{ième} journées de l'institut FARMAN

Projet ICE-T (Identification du Courant Electrique par mesure de Température)

G. Belkacem, M. Berkani, <u>E. Florentin</u>, P.Y. Joubert, S. Lefebvre, C. Rey

ICE-T

Partenaires et historique

• Forces en présence

SATIE

- Maîtrise des modèles de composant de puissance
- Mise en oeuvre expérimentale
- Problème inverse magnétique

LMT

- Maîtrise des modèles thermique
- Mise en oeuvre numérique
- Problème inverse mécanique

• • •

• Dans la continuité de Couplet : pur produit FARMAN

• Réalisation d'un modèle électro-thermique robuste et stable de modules de puissance :

• Etude et localisation des sources de puissance

• Etude du comportement dans le temps des composants de puissance

 Etude de la répartition des différentes grandeurs physiques (courant, champs électrique, température...) au sein de composant

Contexte de l'étude

Illustration 1 Etude du vieillissement des modules de puissance

• Structure multicouche

- Cycles de fonctionnement Variations de température dans l'assemblage
 - Différents matériaux → Contraintes thermo-mécanique (coef. de dilatation différents) Fatigue Défaillance

Contexte de l'étude

Illustration 1

• Puce : composant multicellulaire

I puce : 10⁶ transistors /cm²

- Origine physique de la défaillance ? Point chaud ? Densité locale très élevée dans certaines cellules ?
- A partir de mesures thermiques externes au composant et d'une procédure d'identification :
 - remonter à la distribution de courant (source de pertes locales)
 - l'utiliser pour comprendre l'origine des défaillances

Contexte

Cas d'application 2 Etudes des pertes au sein de composants

• Filtre LC fortement intégré:

Filtre passif multicouche

diélectrique

conducteur

magnétique

isolant

Comment mesurer et où se font les pertes (accès difficile) ? (Bobinage ? Matériaux magnétique ? Vias traversants? ...)

- A partir de mesures thermiques externes au composant et d'une procédure d'identification :
 - Estimer et de localiser les pertes
 - Améliorer la modélisation

Au bilan: Mesure + Identification

A partir de mesures de températures :

Introduction Mise en situation Identification Présentation Méthodes retenues Mesures expérimentales

Conclusion

Identification

• Problème difficile : unicité de la solution, disponibilité des mesures ...

• lci :

Modèle : équation de la chaleur

Paramètres identifiés : sources de chaleur

Paramètres connus : géométrie, conditions limites, matériaux... Résultat mesurés

: température sur tout ou partie du bord

Spécificités liées au composant (ex: géomètrie)

Equations constitutives

• Etude et localisation des sources de puissance

- Dans le domaine
$$\Omega$$
, $T \in \mathcal{V}_T$
 $\forall \underline{x} \in \Omega : \lambda \Delta T + r = \rho c_p \partial_t T$
- Sur le bord $\partial \Omega$, $T \in \mathcal{V}_T$
 $\forall \underline{x} \in \partial_1 \Omega : T = T_d$ et $\partial_n T = \phi_{mes}$
 $\forall \underline{x} \in \partial_2 \Omega : \partial_n T = \phi_d$ et $T = T_{mes}$
données surabondantes
(éventuelles)

 données surabondantes sur les bords, deux cas de figures :

nécessité d'ajouter de l'info

données complètes

données partielles

Différentes familles de méthodes

 $\min_{K\in\mathbb{K}}\mathcal{F}(K)$

fonction éventuellement **régularisée** (Tikhonov)

dépend de : données, observations, modèle et choix de pondérations

Ecart direct à la mesure

Idée :

[Pagnacco et al. 06] [Mahnken 04] [Cottin at al. 84] [Giton at al. 06] ...

 $\mathcal{F}(K) = \|u_K - u_{mes}\|$

Erreur en relation de comportement

[Constantinescu 95] [Geymonat et al. 02] [Geymonat and Pagano 03] [Latourte et al. 08] ...

comportement mis doute dans F

Saut à l'équilibre

Ecart à la réciprocité

Champs virtuels

[Claire et al 04][Hild et al. 00-09] ...

équilibre mis en doute dans *F*

[Bui 95][Ikehata 90][Andrieux et al. 97] [Auffray et al 13]

[Grediac 89] [Grediac et al. 98...09] [Kim et al. 07]...

[Grediac et Hild 2011] [Avril et al 2008]

Ecart réciprocité

• Choix de représentation des sources

Propriétés : [El Badia 2000], [Aufray et al 2013] ...

soit

$$\mathbf{H}_{m,n}^{0} = \begin{pmatrix} \mathbf{a}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} & \dots & \mathbf{a}_{n-1} \\ \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \dots & \mathbf{a}_{n} \\ \mathbf{a}_{2} & \mathbf{a}_{3} & \ddots & & \vdots \\ \vdots & \vdots & & & \vdots \\ \mathbf{a}_{m-1} & \mathbf{a}_{m} & \mathbf{a}_{m+1} & \dots & \mathbf{a}_{m+n-2} \end{pmatrix} \quad \mathbf{H}_{m,n}^{1} = \begin{pmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \dots & \mathbf{a}_{n} \\ \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \dots & \mathbf{a}_{n+1} \\ \mathbf{a}_{3} & \mathbf{a}_{4} & \ddots & & \vdots \\ \vdots & \vdots & & & \vdots \\ \mathbf{a}_{m} & \mathbf{a}_{m+1} & \mathbf{a}_{m+2} & \dots & \mathbf{a}_{m+n-1} \end{pmatrix}$$

$$\forall M > N \quad rank(H_{M,M}^{0}) = N \longrightarrow \mathbf{N}$$

$$\forall Vecteurs \text{ propres de } \left(\mathbf{H}_{N,N}^{1} \cdot (\mathbf{H}_{N,N}^{0})^{-1}\right) \longrightarrow \mathbf{X}_{j}$$

$$\forall Système linéaire \longrightarrow \Upsilon_{j}$$

Ecart à la réciprocité

Illustration (essai numérique)

	exact	identifié
N	3	3
\mathbf{X}_1	0.6 + 0.2i	0.5998 + 0.2001i
r_1	1	1.0028
\mathbf{X}_2	0.3 + 0.8i	0.3002 + 0.7996i
r_2	1	0.995
\mathbf{X}_3	0.7 + 0.4i	0.7002 + 0.4005i
r_3	1	1.0004

Méthdoe mal adaptée à notre étude

méthode mal adaptée à notre situation

Ecart direct à la mesure

données partielles

+ stationnaire

$$f(g) = \|T(g) - T_{mes}\|_{\partial_{mes}\Omega}$$

Minimisation :

 $\min_{g \in G} f(g)$

- Evalutation de T(g)
 - simulation numérique (Castem)

• sources localisées + représ. Eléments Finis : G dimension finie

(constant par élément)

$$T(g) = \sum_{i=1}^{\dim(G)} q_i T_i \qquad \xrightarrow{\text{minimisation}} \quad \mathbb{K}\underline{q} =$$

Ecart direct à la mesure

Problème d'unicité

$$\mathbb{K}\underline{q} = \underline{f}$$

problématique car c'est ce qui se passe en Y et pas en X qui nous interesse

Ajouter de l'information

Ajout d'information

Essai

mesure de la température en surface

Essai

Température sur un point chaud

Evolution de la température en temps et espace

Modèle (CAST3M)

Comparaison Modèle identifié/essai

Température sur un point chaud

Introduction Mise en situation Identification **Présentation** Méthodes retenues Mesures expérimentales

Conclusions et Perspectives

Bilan

- Différentes méthodes testées
 - Ecart à la réciprocité

développements pas directement utiles dans ICE-T mais intérêt dans d'autres contexte (Etude de robustesse)

Ecart direct à la mesure

Méthode développée dédiée ICE-T : réponse OK Encore des possibilités de développements à faire utilisation dans un contexte plus général (résolution / optimisation)

Projet exploratoire : ouverture de pistes

- identification : maîtrise de nouvelles stratégies
- expérimental : nouvelles données numériques

merci de votre attention