

Projet COMEDY

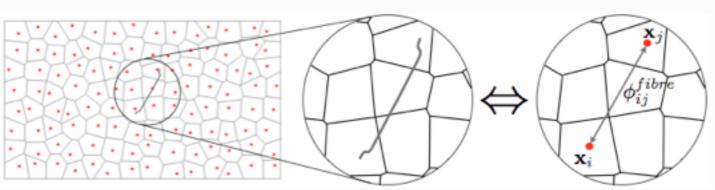
Couplage de modèles multi-échelles espace/temps en dynamique

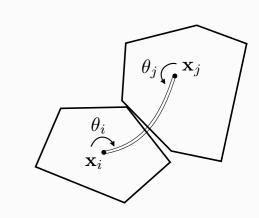
L. Chamoin, C. Rey, J. Marchais (LMT-Cachan) F. De Vuyst (CMLA)

Contexte

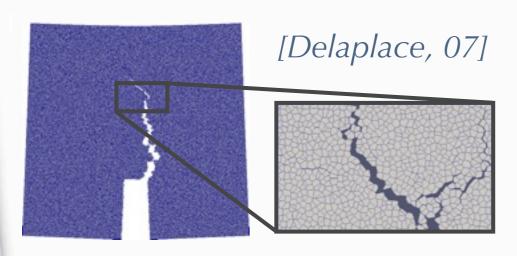
La simulation en dynamique d'un milieu avec toute sa complexité à fine échelle:

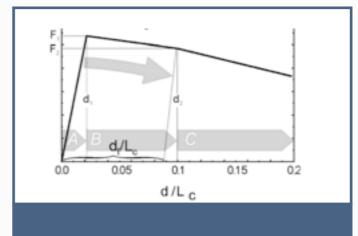
est nécessaire pour représenter les phénomènes locaux

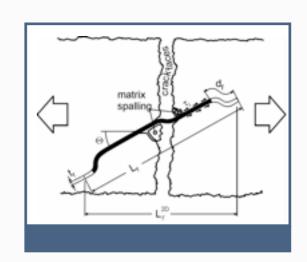




description à l'échelle de l'agrégat (modèles discrets)





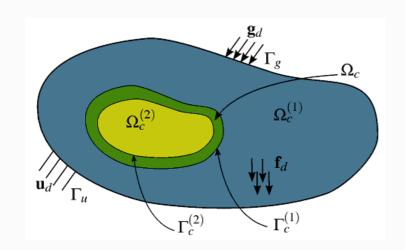


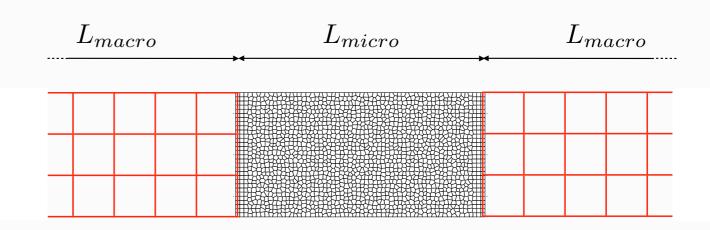
échelles spatio/temporelles incompatibles avec l'étude de la propagation d'ondes à longue distance

Contexte

Effets d'intérêt aux petites échelles se concentrent dans des régions localisées

- modèle fin nécessaire que dans une zone restreinte
- utilisation d'un modèle grossier homogénéisé (séparation d'échelles) qui conserve l'info macro et permet la simulation

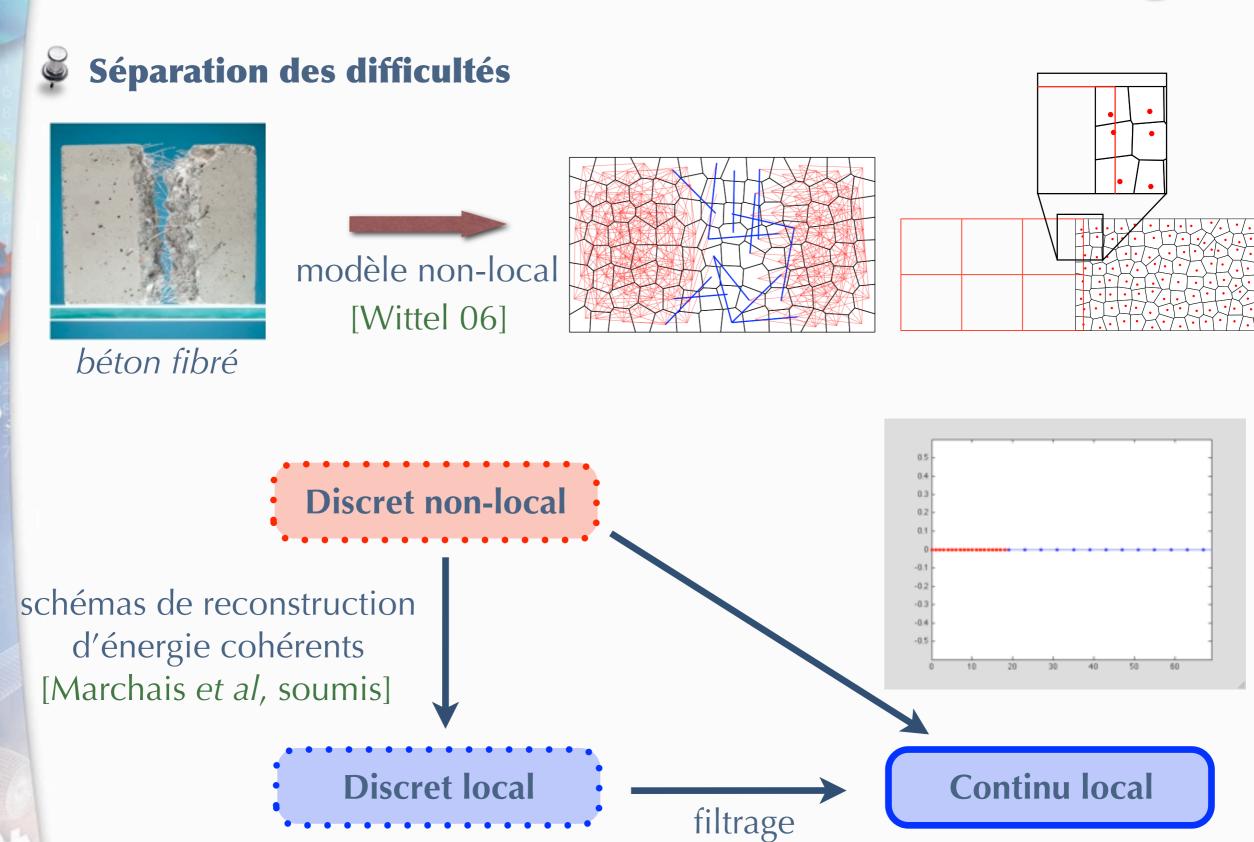




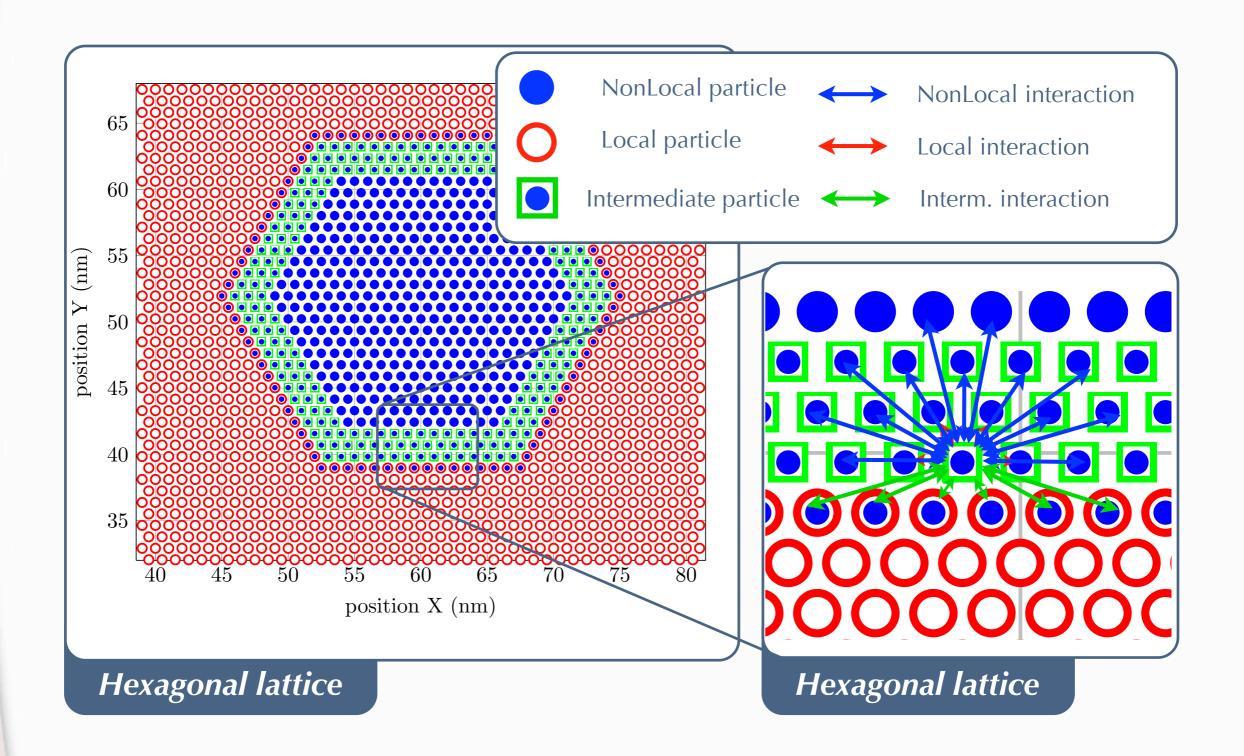
méthodes multi-échelles depuis une vingtaine d'années [Curtin et al 03, Miller et al 09] (couplage atomique/continu)

peu de méthodes fiables en dynamique: modèle homogénéisé / couplage

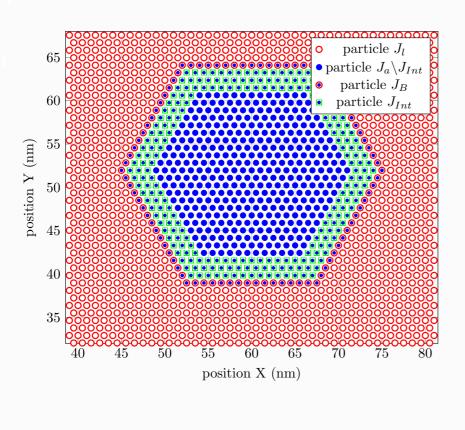
Stratégie

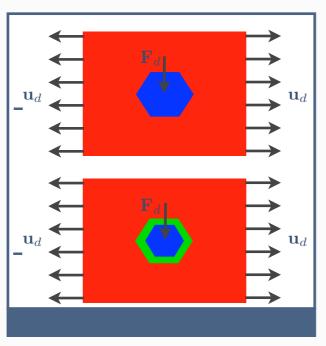


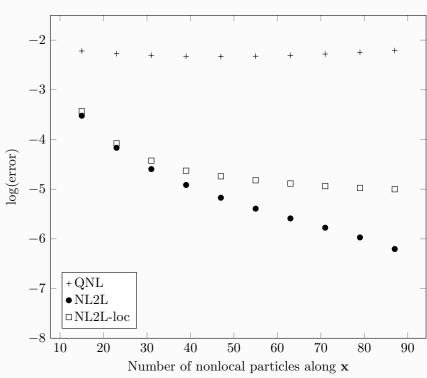
Couplage nonlocal/local

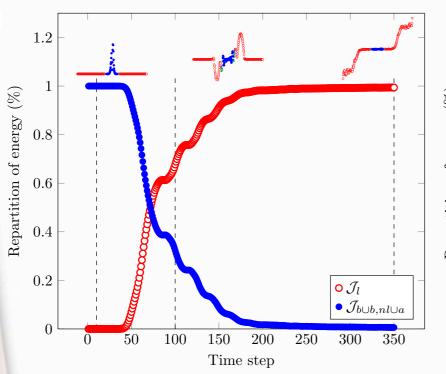


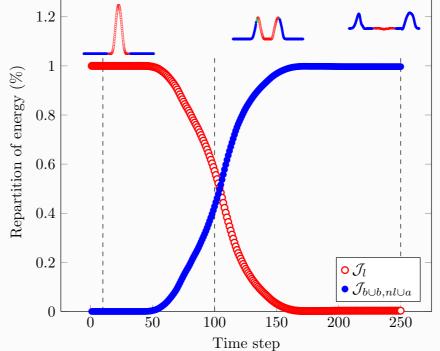
Couplage nonlocal/local











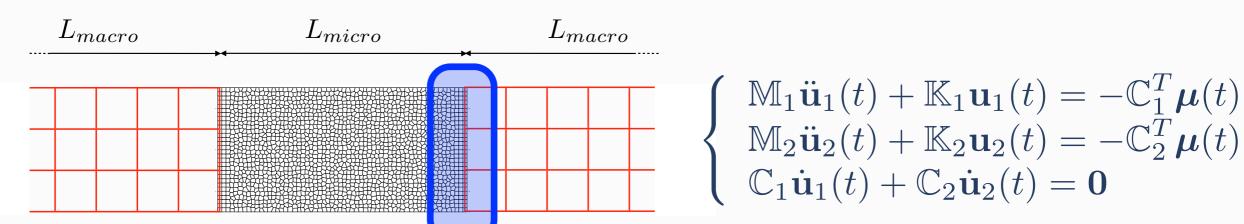
couplage performant par rapport à:

- QC classique
- NL2L[Shapeev 11]

Problématique scientifique

Couplage particulaire / continu

- le couplage/simulation en dynamique est un sujet ouvert
- OBJECTIF: coupler sans créer de réflexions parasites (artefact numérique)



interface fictive où sont traitées les incompatibilités de modèles

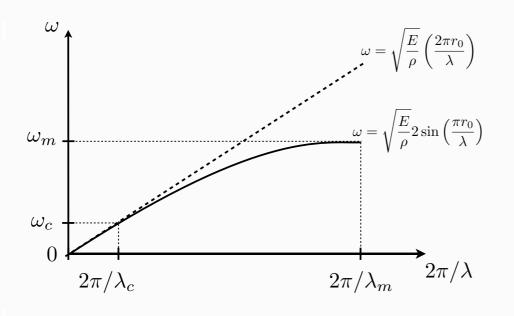
- surfacique
- volumique: QC (Tadmor 96), Arlequin (Ben Dhia 98, Xu & Belytschko 08)
- + utilisation de divers schémas / discrétisations en temps [Combescure & Gravouil 02, Diaz & Grote 09]

étudié lorsque les ondes peuvent être représentées par les 2 modèles

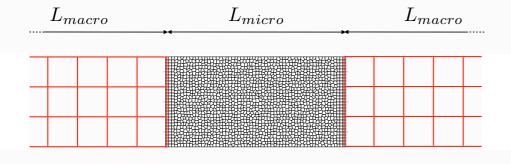
Problématique scientifique

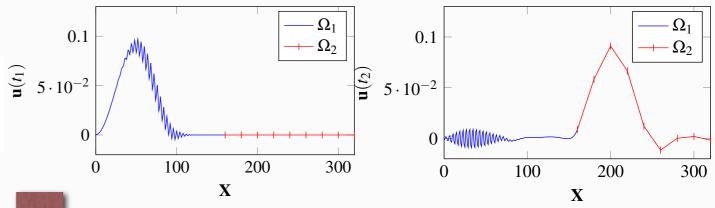
Incompatibilités particulaire / continu

Le modèle continu, obtenu par hypothèse de séparation d'échelle, ne peut et ne doit représenter que les phénomènes pour lesquels il a été conçu.



différentes dispersions (fréquence limite)





filtrage nécessaire si contenu fréquentiel non compatible avec le modèle grossier

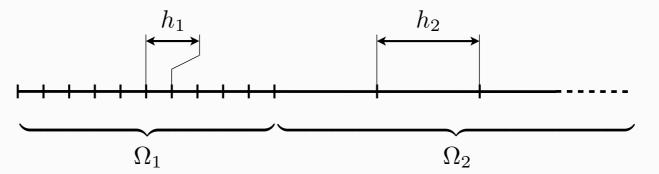
Originalité du projet

Amortissement numérique par le schéma en temps (méthode, HHT,...)

pas de sélection propre de la gamme fréquentielle filtrée

Coeur du projet : filtrage du signal à l'interface

- étude de diverses stratégies de filtrage du signal, lorsque le modèle grossier est incompatible avec une partie du signal propagé
- séparation propre des échelles dans la zone de couplage, puis atténuation du signal non-compatible par une méthode dérivée de la PML
- on ramène l'étude à l'incompatibilité entre 2 modèles de calcul avec différentes discrétisations



Séparation micro/macro

$$\mathbf{u}(t) = \mathbf{u}_{M}(t) + \mathbf{u}_{m}(t)$$

$$\mathbf{u}_{M}(t) = \mathbb{Q}_{M}\mathbf{u}(t) \qquad \mathbf{u}_{m}(t) = \mathbb{P}_{m}\mathbf{u}(t)$$

Plusieurs stratégies de séparation:

- utilisation d'opérateurs de projection d'une grille sur l'autre,
- utilisation de la base modale,
- utilisation d'**ondelettes** avec analyse fréquentielle locale en temps et espace [Goswani & Chan 11]

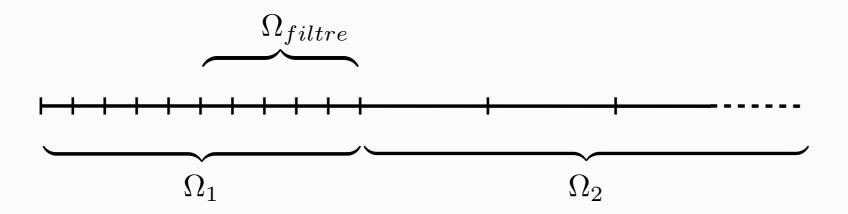
PML sélective

[Bérenger 94, To & Li 05]

$$\mathbb{M}\ddot{\mathbf{u}}(t) + \mathbb{K}\mathbf{u}(t) + 2f\mathbb{MP}_m\dot{\mathbf{u}}(t) + f^2\mathbb{MP}_m\mathbf{u}(t) = \mathbf{0}$$

 \longrightarrow atténuation en e^{-ft} de la partie micro

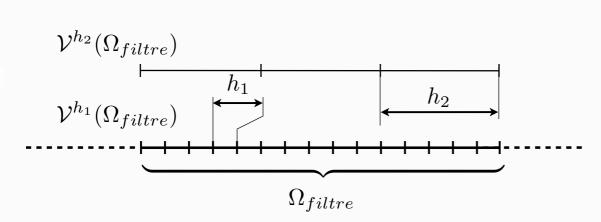
$$\frac{L_f}{c} > \ln\left(\frac{1}{0.01}\right) \frac{1}{f} \quad \Longrightarrow \text{ taux de réflexion <1\%}$$

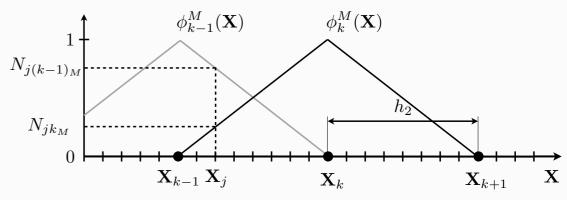


$$\begin{cases} \mathbb{M}_{1}\ddot{\mathbf{u}}_{1}^{(n+1)} + 2f\mathbb{M}_{1}\mathbb{P}_{m}\dot{\mathbf{u}}_{1}^{(n+1)} + f^{2}\mathbb{M}_{1}\mathbb{P}_{m}\mathbf{u}_{1}^{(n+1)} = -\mathbb{K}^{1}\mathbf{u}_{1}^{(n+1)} - \mathbb{C}_{1}^{T}\boldsymbol{\mu}^{(n+1)} \\ \mathbb{M}_{2}\ddot{\mathbf{u}}_{2}^{(n+1)} = -\mathbb{K}_{2}\mathbf{u}_{2}^{(n+1)} - \mathbb{C}_{2}^{T}\boldsymbol{\mu}^{(n+1)} \\ \mathbb{C}_{1}\dot{\mathbf{u}}_{1}^{(n+1)} + \mathbb{C}_{2}\dot{\mathbf{u}}_{2}^{(n+1)} = \mathbf{0} \end{cases}$$

Techniques de filtrage

ho Projecteur macro $\mathbb{P}_m = \mathbb{P}_{macro}$





 $\mathbf{u}_M = \mathbb{N}_M \mathbf{d}_M$ interpolation de la base macro sur la base micro

On minimise
$$\mathcal{L}(\dot{\mathbf{u}}, \dot{\mathbf{d}}_M) = \frac{1}{2}\dot{\mathbf{u}}^T \mathbb{M}\dot{\mathbf{u}} - \frac{1}{2}\dot{\mathbf{d}}_M^T \mathbb{M}\dot{\mathbf{d}}_M$$
 [Wagner & Liu 03]

$$\dot{\mathbf{u}}_{m}^{T} \mathbb{M} \dot{\mathbf{u}}_{M} = \dot{\mathbf{u}}^{T} \mathbb{P}_{m}^{T} \mathbb{M} \mathbb{Q}_{M} \dot{\mathbf{u}} = 0$$

$$E^{mec} (\dot{\mathbf{u}}, \mathbf{u}) = E^{mec} (\dot{\mathbf{u}}_{M}, \mathbf{u}_{M}) + E^{mec} (\dot{\mathbf{u}}_{m}, \mathbf{u}_{m}) + \mathbf{u}_{m}^{T} \mathbb{K} \mathbf{u}_{M}$$

Techniques de filtrage

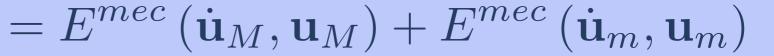
Projecteur basé sur les modes propres

problème aux valeurs propres généralisé dans $\Omega_{filtre}: \mathbb{K}_i \phi - \omega^2 \mathbb{M}_i \phi = \mathbf{0}$

$$\boldsymbol{\phi}_{j}^{T} \mathbb{M} \boldsymbol{\phi}_{k} = \begin{cases} 1 & \text{si } k = j \\ 0 & \text{sinon} \end{cases} \quad \boldsymbol{\phi}_{j}^{T} \mathbb{K} \boldsymbol{\phi}_{k} = \begin{cases} \omega_{i}^{2} & \text{si } k = j \\ 0 & \text{sinon} \end{cases}$$

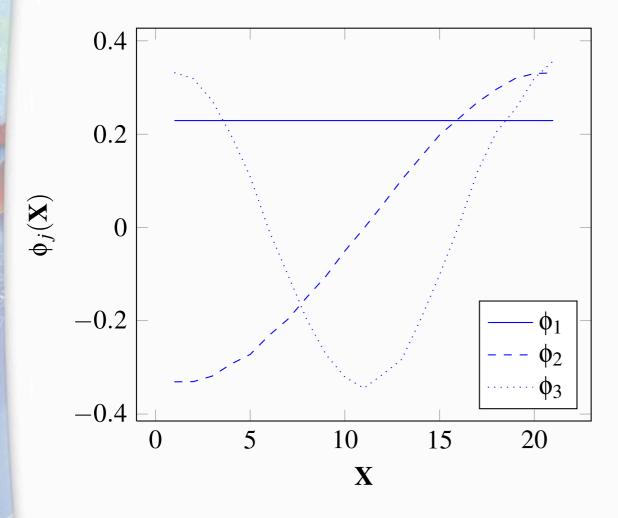
$$\mathbf{u}_{M}(t) = \sum_{j=1}^{p} \alpha_{j}(t)\boldsymbol{\phi}_{j} \quad \mathbf{u}_{m}(t) = \sum_{j=p+1}^{N_{f}+1} \alpha_{j}(t)\boldsymbol{\phi}_{j}$$

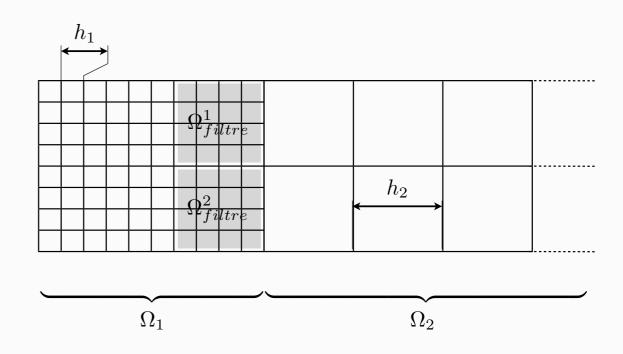
$$\mathbb{Q}_M=\mathbb{N}\mathbb{N}^T\mathbb{M}$$
 et $\mathbb{P}_m=\mathbb{I}-\mathbb{Q}_M$ avec $\mathbb{N}=[oldsymbol{\phi}_1,\ldots,oldsymbol{\phi}_p]$



Techniques de filtrage

Projecteur basé sur les modes propres

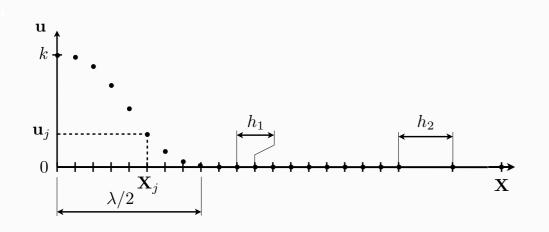




- complexe à mettre en oeuvre dans le cas général
- cas pratique: on ne conserve que le mode rigide (filtrage sur 1 élément)

$$\mathbb{P}_m = \mathbb{P}_{rigide}$$

Application 1D



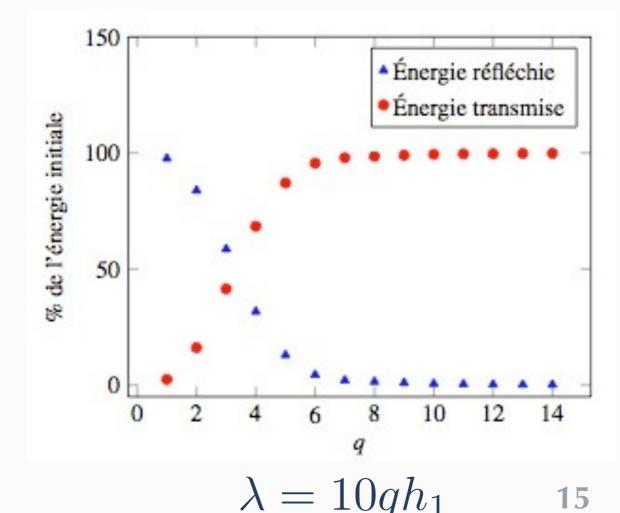
$$\mathbf{u}_{i}^{(n+1)} = \mathbf{u}_{i}^{(n)} + \Delta t \dot{\mathbf{u}}_{i}^{(n)} + \frac{\Delta t^{2}}{2} \ddot{\mathbf{u}}_{i}^{(n)}$$
$$\dot{\mathbf{u}}_{i}^{(n+1)} = \dot{\mathbf{u}}_{i}^{(n)} + \frac{\Delta t}{2} \left(\ddot{\mathbf{u}}_{i}^{(n)} + \ddot{\mathbf{u}}_{i}^{(n+1)} \right)$$

Newmark explicite ($\beta = 0, \gamma = 0.5$)

Cas $\mathbb{P}_m = 0$

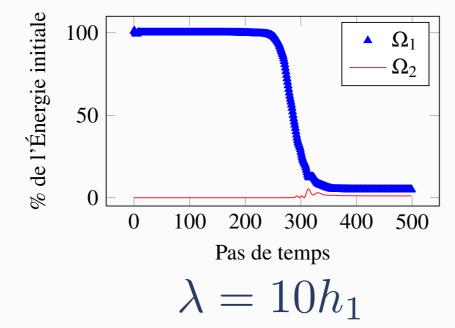
$$\lambda = 10h_1$$
 $\frac{100}{100}$
 $\frac{100}{100}$

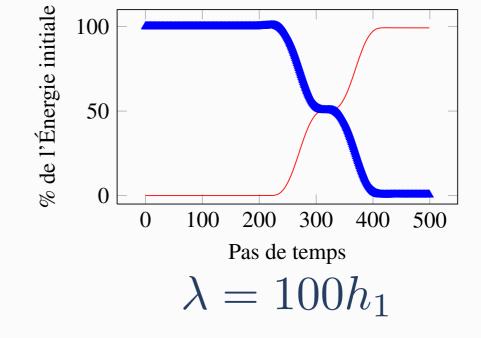
Pas de temps



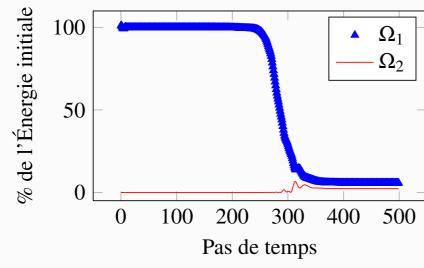
Application 1D

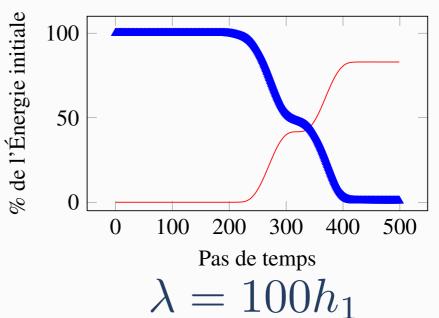
$$\mathbb{P}_m = \mathbb{P}_{macro}$$





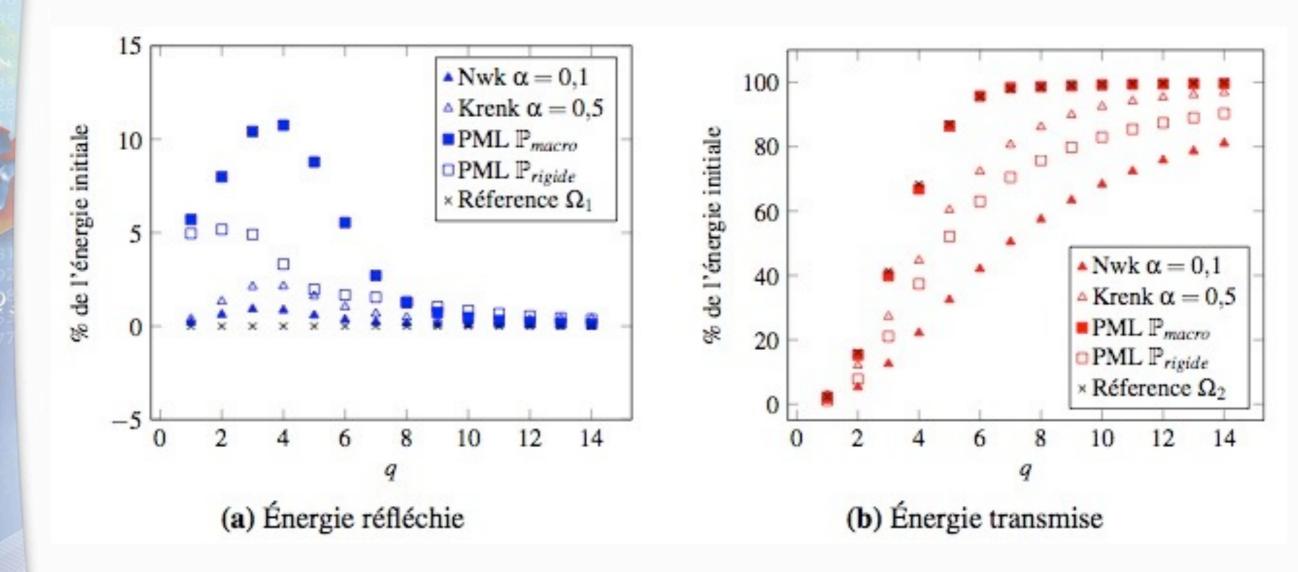
$\mathbb{P}_m = \mathbb{P}_{rigide}$





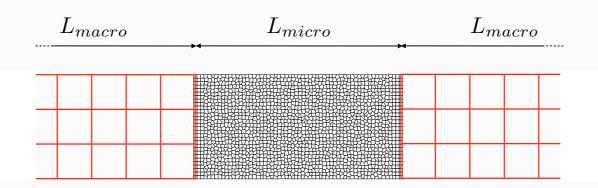
Application 1D

Comparaison entre projecteurs



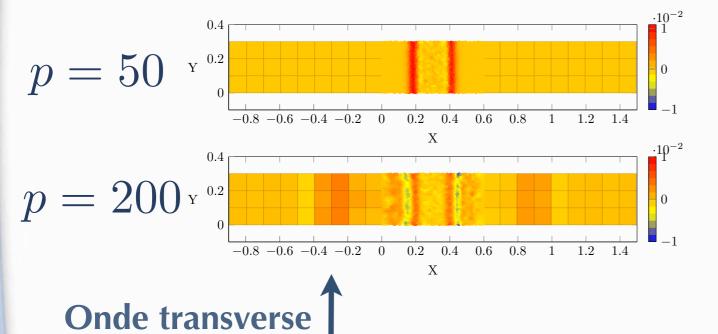
pas de méthode parfaite

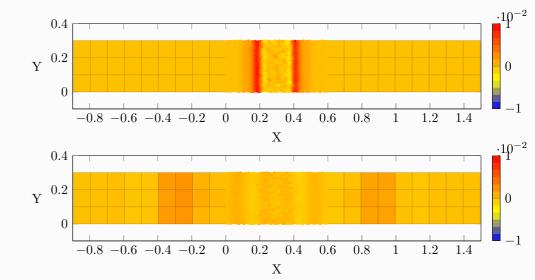
Application 2D

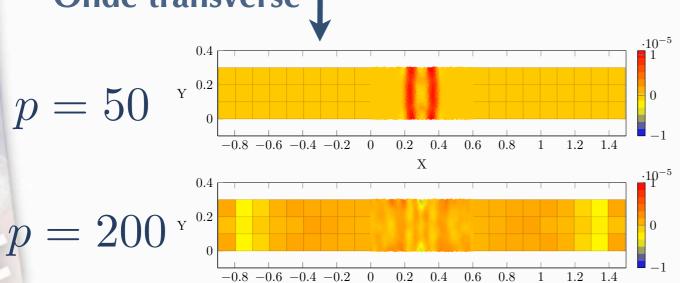


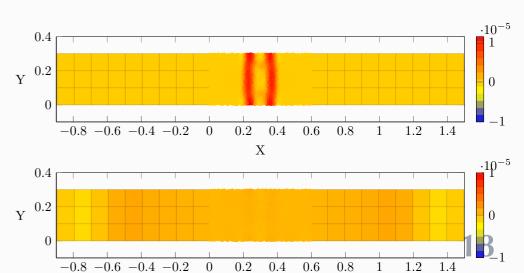
$$\lambda = 8H$$

Onde longitudinale ←→









Projecteur basé sur les ondelettes

- adapté à l'analyse locale temps-fréquence
- ondelettes de 2ème génération, avec approche «mutirésolution» [He et al 07, Quraishi et al 09]

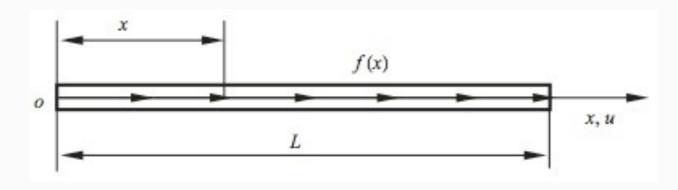
$$u^{0} \longrightarrow u^{1} \longrightarrow u^{2} \longrightarrow u^{j-1} \longrightarrow u^{j}$$
 $d^{0} \longrightarrow d^{1} \longrightarrow d^{2} \longrightarrow d^{j-1} \longrightarrow u^{j}$
 $V_{j+1} = V_{j} + W_{j}$

$$u^{j}(x) = u^{j-1}(x) + d^{j-1}(x) = u^{0}(x) + \sum_{i=0}^{j-1} d^{i}(x)$$
$$= \sum_{l} u_{l}^{0} \phi_{l}^{0}(x) + \sum_{i=0}^{j-1} \sum_{m} r_{m}^{i} \psi_{m}^{i}(x)$$

fcts d'échelle
$$\phi_l^j = \sum_k h_{k,l}^j \phi_k^{j+1}$$

fcts d'ondelette
$$\psi_m^j = \sum_k g_{k,m}^j \phi_k^{j+1}$$

Projecteur basé sur les ondelettes



$$u^{j}(x) = [\mathbf{\Phi}^{0}\mathbf{\Psi}^{0}\mathbf{\Psi}^{1}\dots\mathbf{\Psi}^{j-1}][\mathbf{u}^{0}\mathbf{r}^{0}\mathbf{r}^{1}\dots\mathbf{u}^{j-1}]^{T}$$

$$u^{j}(x) = [\mathbf{\Phi}^{0}\mathbf{\Psi}^{0}\mathbf{\Psi}^{1}\dots\mathbf{\Psi}^{j-1}][\mathbf{u}^{0}\mathbf{r}^{0}\mathbf{r}^{1}\dots\mathbf{u}^{j-1}]^{T} \begin{bmatrix} K_{\varphi\varphi}^{0,0} & K_{\varphi\psi}^{0,1} & K_{\varphi\psi}^{0,1} & \cdots & K_{\varphi\psi}^{0,j} \\ K_{\psi\varphi}^{0,0} & K_{\psi\psi}^{0,0} & K_{\psi\psi}^{0,1} & \cdots & K_{\psi\psi}^{0,j} \\ K_{\psi\varphi}^{1,0} & K_{\psi\psi}^{1,0} & K_{\psi\psi}^{1,1} & \cdots & K_{\psi\psi}^{1,j} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ K_{\psi\varphi}^{j,0} & K_{\psi\psi}^{j,0} & K_{\psi\psi}^{j,1} & \cdots & K_{\psi\psi}^{j,j} \end{bmatrix} \begin{bmatrix} u^{0} \\ d^{0} \\ d^{1} \\ \vdots \\ d^{j} \end{bmatrix} = \begin{bmatrix} f_{\varphi}^{0} \\ f_{\psi}^{0} \\ \vdots \\ f_{\psi}^{j} \end{bmatrix}$$

$$\psi_m^j = \phi_m^{j+1} + \sum_k s_{k,m}^j \phi_k^j$$

coefficients de lifting

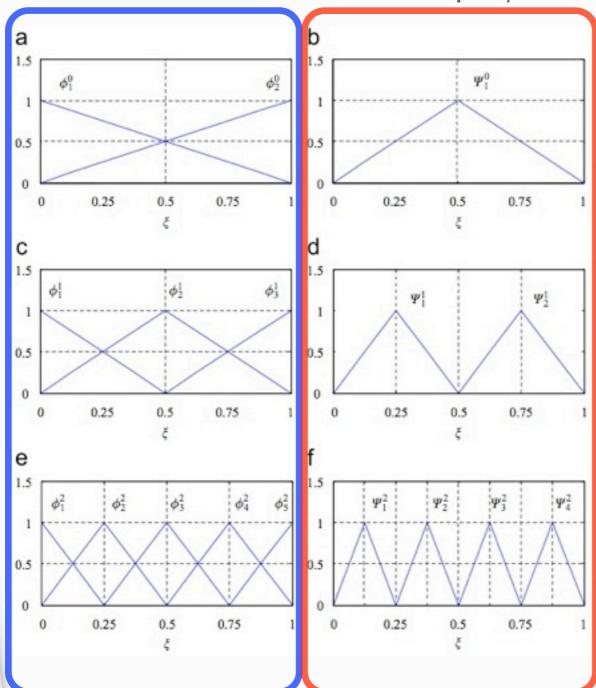
- assure l'orthogonalité au sens de K
- multirésolution, et découplage partiel de l'énergie

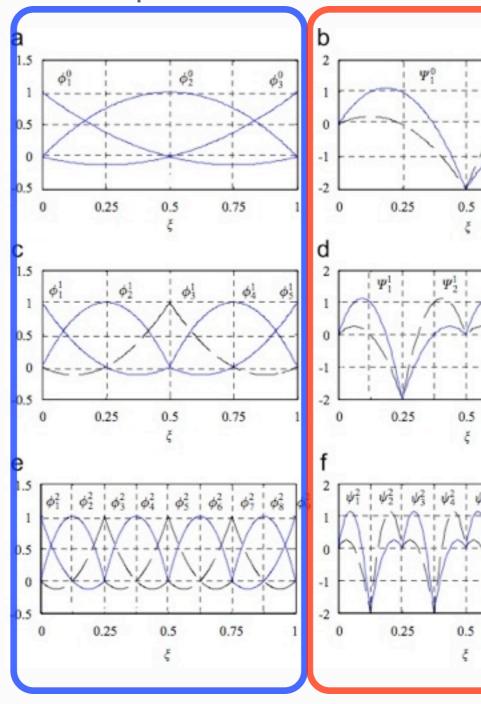
0.75

0.75

Projecteur basé sur les ondelettes

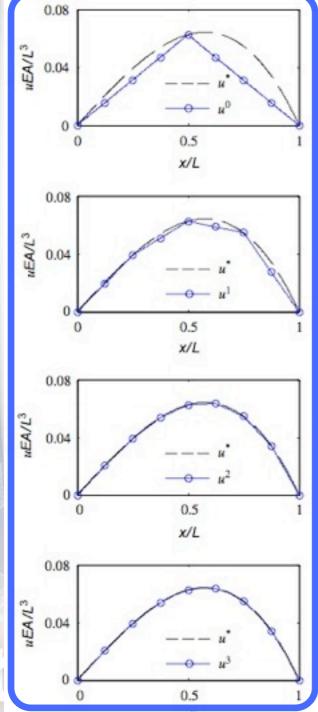
Construction avec les bases polynomiales classiques

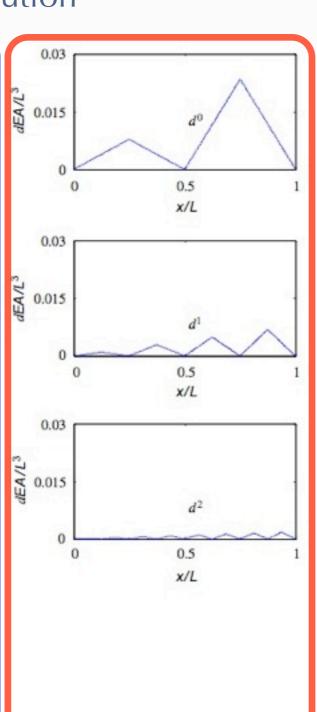


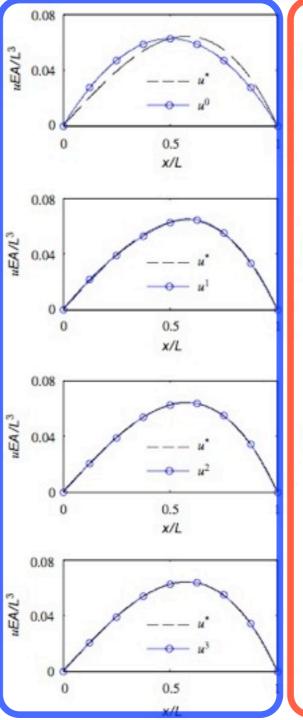


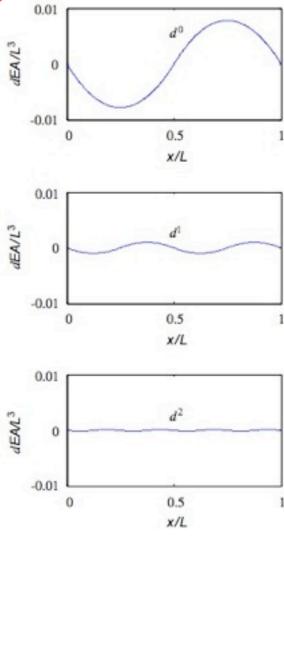
Projecteur basé sur les ondelettes

multirésolution









Conclusions

- Mise en place d'un couplage «propre» en dynamique dans le cadre multiéchelles avec incompatibilités
- Etude de différentes stratégies de filtrage de la partie micro

- Analyse par ondelettes semble prometteuse (cas hétérogène??)
- Application sur des cas-tests réalistes (taux d'endommagement local sous impact)
- Décomposition de domaine et stratégie multi-échelle en temps

Merci !!!

