Guaranteed Control of Switched Control Systems Using Model Order Reduction and Bisection

<u>Adrien Le Coënt</u>¹, Florian De Vuyst¹, Christian Rey², Ludovic Chamoin², Laurent Fribourg³

8ème journée de l'Institut Farman, Projet SWITCHDESIGN

CMLA Contro do Mothématiques et de Lours Applications

- 1. CMLA Centre de Mathématiques et de Leurs Applications
- 2. LMT-Cachan Laboratoire de Mécanique et Technologie
- 3. LSV Laboratoire de Spécification et Vérification

me lit (a)

- Goal : control the evolution of an operating system with the help of actuators
- Framework of the switched control systems : one selects the working modes of the system over time, every mode is described by differential equations (ODEs or PDEs)
- Application to medium/high dimensional systems :
 - Model Order Reduction
 - Error bounding
 - State space bisection

글 🖌 🖌 글 🛌

• Described by the differential equation :

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$: output
- $u \in \mathbb{R}^{p}$: control input, takes a finite number of values (modes)
- A,B,C : matrices of appropriate dimensions
- Idea : impose the right u(t) such that x and y verifies some properties (stability, reachability...)
- Objectives :
 - approximate x-stabilization : make all the state trajectories starting in a compact $R_x \subset \mathbb{R}^n$ return to $R_x + \epsilon_x$;
 - **9** guaranteed y-convergence : send the output of all the trajectories starting in R_x into $R_y \subset \mathbb{R}^m$;

A B > A B >

Classical approach of the control theory

Very useful for *on-line* control

- Aim : research of the solution of the dual minimisation problem
- Stability control :
 - Lyapunov method, late 19th
- Optimal control :
 - Hamilton-Jacobi-Bellmann, 1950
 - Lev Pontryagin, 1956
 - Extension to PDEs : J.L.Lions, 1968

글 🖌 🔺 글 🛌

- MINIMATOR : code developed at the LSV [L.Fribourg and R.Soulat, 2013]
 - Based on the invariant sets theory
 - Permits the synthesis of *state-dependant* controllers (*correct-by-design*)
 - Operational for ODEs
 - Based on a technique of decomposition of the state-space into local regions where the control is uniform (for a given mode)

글 🖌 🔺 글 🛌

글 🖌 🖌 글 🛌

э

E > < E > ...

MINIMATOR

- Principle (for the stability) :
 - Let R_x be a region of the state space one wants to control
 - One looks for a pattern (a sequence of control modes) which sends R_x in itself and the output in R_y
 - If no pattern is found, R_x is divided into smaller regions and one looks for patterns which send these sub-regions in R_x and their output in R_y
- Underlying ideas :
 - Temporal discretization
 - Measures carried out at the end of every pattern
 - Linearity of the equations which allows the use of zonotopes (matrices) to represent the regions of the state-space

Image: A image: A

MINIMATOR

• Example : Schematic representation of the box R_x , the sub-boxes and their images

æ

MINIMATOR

• Properties [L.Fribourg and R.Soulat, 2013] :

- The convergence properties are proved under limited hypotheses (contracting modes, verified in practice)
- Computational cost at most in $O(2^{nd}N^k)$
 - n: dimension of the state-space
 - d : maximal length of decomposition
 - N : number of modes
 - k : maximal length of the patterns
- Consequence :
 - Dimension of the state-space very limited (< 10 in practice)
 - Necessity of a Model Order Reduction for medium/large scale systems

글 🖌 🔺 글 🕨

Procedure of control synthesis

Offline

Online

11 / 22

3

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

э

< 注) < 注) < 注)

Gramian based model reduction

The gramians are solutions of the Lyapunov equations :

$$A\mathcal{P} + \mathcal{P}A^* + BB^* = 0_n \tag{1}$$

$$A^*\mathcal{Q} + \mathcal{Q}A + C^*C = 0_n \tag{2}$$

Energetic interpretation :

 The inner product based on *P*⁻¹ characterizes the minimal energy required to steer the state from the state 0 to x as t → ∞

$$||x||_{\mathcal{P}^{-1}}^2 = x^{\top} \mathcal{P}^{-1} x$$

• The inner product based on Q indicates the maximal energy produced by observing the output of the system corresponding to an initial state x_0 when no input is applied

$$\|x_0\|_{\mathcal{Q}}^2 = x_0^\top \mathcal{Q} x_0$$

きょうきょう

Principle : place ourselves in a basis where both concepts of observability and controllability are equivalent (i.e. such that the system is *balanced*, \mathcal{P} and \mathcal{Q} are equal and diagonal).

Balanced truncation

Computation of a balancing transformation T_{bal} and T_{bal}^{-1} :

• Cholesky :
$$\mathcal{P} = UU^*$$

2 Eigenvalue decomposition : $U^*QU = K\Sigma^2K^*$

Somputation :
$$T_{bal} = \Sigma^{1/2} K^* U^{-1}$$
 and $T_{bal}^{-1} = U K \Sigma^{-1/2}$

The system becomes : $\tilde{A} = T_{bal}AT_{bal}^{-1}$, $\tilde{B} = T_{bal}B$, $\tilde{C} = CT_{bal}^{-1}$. The projection is then : $\pi_r = T_{bal}(:, 1: n_r)$

Construction of the reduced order system

- Reduction by projection : $\hat{x} = \pi_r x$
- Construction of the reduced system of order n_r :

$$\begin{cases} \dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}u \\ y_r = \hat{C}\hat{x} \end{cases}$$
(3)

Associated error :

$$\epsilon_{y}(x_{0}, u, t) = \|y(x_{0}, u, t) - y_{r}(\pi_{r}x_{0}, u, t)\|$$

• Bounded by [4] : $\epsilon_y(t) \leq \epsilon^{x_0=0}(t) + \epsilon^{u=0}(t)$ with

$$\begin{split} \epsilon_{y}^{x_{0}=0}(t) &\leq \|u(\cdot)\|_{\infty}^{[0,t]} \int_{0}^{t} \|\begin{bmatrix} C & -\hat{C} \end{bmatrix} \begin{bmatrix} e^{tA} & \\ & e^{t\hat{A}} \end{bmatrix} \begin{bmatrix} B \\ \hat{B} \end{bmatrix} \|dt \\ \epsilon_{y}^{u=0}(t) &\leq \sup_{x_{0} \in X_{0}} \|\begin{bmatrix} C & -\hat{C} \end{bmatrix} \begin{bmatrix} e^{tA} & \\ & e^{t\hat{A}} \end{bmatrix} \begin{bmatrix} x_{0} \\ & \pi_{r}x_{0} \end{bmatrix} \| \end{split}$$

Guaranteed control

• Computation of the bound :

$$\epsilon_{y} = \sup_{j \in \llbracket 1, \dots, +\infty \llbracket} \left\{ \| u(\cdot) \|_{\infty}^{[0,j\tau]} \int_{0}^{j\tau} \| \begin{bmatrix} C & -\hat{C} \end{bmatrix} \begin{bmatrix} e^{tA} \\ e^{t\hat{A}} \end{bmatrix} \begin{bmatrix} B \\ \hat{B} \end{bmatrix} \| dt + \sup_{x_{0} \in X_{0}} \| \begin{bmatrix} C & -\hat{C} \end{bmatrix} \begin{bmatrix} e^{j\tau A} \\ e^{j\tau \hat{A}} \end{bmatrix} \begin{bmatrix} x_{0} \\ \pi_{R}x_{0} \end{bmatrix} \| \right\}$$

- Objectives for the full order system : R_x , R_y .
- Control synthesis on the reduced system with the objectives : $\hat{R}_x = \pi_r R_x$ and R_y^{ϵ} defined as :

$$R_y^\epsilon:= ext{sub-box of} \quad R_y \quad ext{such that}: \quad orall y \in \partial R_y, orall y' \in R_y^\epsilon, \|y-y'\| \geq \epsilon_y^\infty$$

ヨト イヨト

3

★ Ξ ► ★ Ξ ►

47 ▶

Offline control

- Computation of a pattern sequence with the reduced system, direct application on the full order system
- Test on a linearized model of a distillation column [5] : n = 11 and $n_r = 2$

∃ ► < ∃ ►</p>

Online control

- Having synthesized (offline) the controller :
 - Unknown initial state : x₀
 - 2 From the output y_0 , reconstruction of the reduced state \hat{x}_0
 - **(a)** Application of the pattern $u(\hat{x}_0)$, the state is sent to x_1
 - Unknown initial state x₁...
- Current work : exact reconstruction

19/22

▶ < ∃ >

Other applications

 Control of the temperature of a 4 room appartment : offline and online first tests

20 / 22

- ∢ ≣ →

Open questions and future work

Remaining issue :

• guaranteeing that the projection of the full order system state $\pi_r x$ stays in \hat{R}_x

 \Rightarrow guaranteed x-stabilization

 \Rightarrow projection on the border of \hat{R}_x

- Future work :
 - Online reconstruction of the reduced state
 - \Rightarrow reduced Kalman filter
 - \Rightarrow reconstruction error estimation
 - Application to large scale systems

- ∢ ≣ →

- Peter Benner and André Schneider. Balanced truncation model order reduction for lti systems with many inputs or outputs. In *Proceedings* of the 19th international symposium on mathematical theory of networks and systems-MTNS, volume 5, 2010.
- [2] L. Fribourg, U. Kühne, and R. Soulat. Minimator : a tool for controller synthesis and computation of minimal invariant sets for linear switched systems, March 2013.
- [3] L. Fribourg and R. Soulat. *Control of Switching Systems by Invariance Analysis.* Focus series. John Wiley and Sons, ISTE Ltd, 2013.
- [4] Zin Han and Bruce Krogh. Reachability analysis of hybrid systems using reduced-order models. In *American Control Conference*, pages 1183–1189. IEEE, 2004.
- [5] D. Tong, W. Zhou, A. Dai, H. Wang, X. Mou, and Y. Xu. \mathcal{H}_{∞} model reduction for the distillation column linear system. *Circuits Syst Signal Process*, 2014.

3

伺き イヨト イヨト