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The Problem
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(a) Solid to be covered. (b) Available spheres sizes.
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The Covering Problem

An Example

~ /]

Figure : Example of a covering.




The Covering Problem

The Covering Problem

Definition

The Covering Problem

Given:
- a compact set T C R3,
a finite set R C R4 of radii,

a set N indexing the spheres and
- a function p: N — R,

we have to find a set of spheres

{ B(x(7),p(0)) | i€ N}

of minimum cardinality and covering all the points in T.




The Covering Problem

The Covering Problem

A Formulation

In Liberti et al.l | the authors formulated the problem as follows:

lx' = p|” < ui(p Z wir? + (1 — ui(p))M* Vi € N,Vpe T

jeu
> wj=1, VieN
jeu

ienN

/ ui(p)dp > ey, VieN
pET
/ ui(p)dp < Vol(T) yi, VieN
pET

IL. Liberti, N. Maculan & Y. Zhang. “Optimal configuration of
gamma ray machine radiosurgery units: the sphere covering subproblem”
Optimization Letters: Vol. 3, pp. 109-121, 2009.




The Covering Problem

The Covering Problem

A Formulation

Nonlinear nonconvex mixed-integer infinite programming problem:

i

lIx" = pl* < ui(p) > wyrf + (1 — ui(p))M? Vi€ N,Vpe T
Jjeu
dwi=1, VieN
Jjeu
> ulp)21, VpeT
ieN

/ ui(p)dp > eyi, VYieN

pET

/ ui(p)dp < Vol(T) yi, VieN
peT




The Packing Problem

The Packing Problem

Characteristics of the packing problem:
@ Overlappings are not allowed; and

@ the spheres must be totally inside the container.

Figure : Example of a packing.




The Packing Problem

The Packing Problem

The goal is to maximize the density:

> ; volume(object;)
volume(container)

density =

Objective function:

4 3,,.
Zi §7Tri Yi

max . .
volume(container)

Removing the constants:

max E r,-3 Yi-

ieS




The Packing Problem

The Packing Problem

A Formulation

For the problem of packing unequal spheres in a 3-dimensional
polytope defined by

amX + bmy +cmz>dyn, m=1....M,

A. Sutou and Y. Dai ! used the following variables in their model:

(a) x' € R3 is the center of sphere i; and

]
o (b) wi, € {0,1} is set to 1, if sphere i has radius ry.

1A, Sutou & Y. Dai. “Global Optimization Approach to Unequal Spheré
Packing Problems in 3D". Journal of Optimization Theory and Applicatio
Vol. 114, No 3, pp. 671-694, 2002.




The Packing Problem

The Packing Problem

A Formulation

In Sutou et al., the authors formulated the problem of packing
unequal spheres in a 3-dimensional polytope as follows:

N K
i E E I’kW,k

i=1 k=1

. . 2
sa || *XJHZ > (Zrkwik+2rkwjk) , Vi#£j
k=1 k=1
K
|amXi + bmyi + CmZi — dm|/\/ a2 + B3 + & > Zrkw,-k, Vi, m
k=1

amXi + bmyi + cmzi —dm >0, Vi, Vm

K
Z Wik S 1 ; Vi
k=1

wi € {0,1}, Vi, Vk
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Proposed Model

Proposed Model

We propose a model based essentially on the parameters «, which
represent the maximum allowed overlap between each pair of
spheres.




Proposed Model

Proposed Model

So the constraints
Ix" = <[ = (r; + ;)
by introducing parameters a become
X" = X[ = (rj + r—ay)?.

But they should only constrain variables associated with spheres
used in the packing.




Proposed Model

Proposed Model

Let y; € {0,1} assume value 1 if sphere i is packed.

We could have

X" =X > (ri 4+ 1 — ) yiy; -




Proposed Model

Proposed Model

Let y; € {0,1} assume value 1 if sphere i is packed.
We could have

X' =X |2 > (ri 4+ 1 = @) vy
But to avoid the multiplication of variables, we will use

X = X2 > (i + 1 — ) (vi +y; — 1)




Proposed Model

The Covering Problem

Proposed Model

Proposed Model for the Covering Problem
n
maxXx Z Ci Yi
i=1

X' =X > (n+r—a)’ ity —1), VI<i<j<n
x'eT, Vi
y € {0,1}"




Proposed Model

The Covering Problem

Proposed Model

Proposed Model for the Covering Problem
n
maxXx Z Ci Yi
i=1

X' =X > (n+r—a)* ity —1), VI<i<j<n
x'eT, Vi
y € {0,1}"




Proposed Model

Proposed Model

Parameters Existence Theorem

There are
{O‘ij 2 0}1§i<j§n

and
{ci > Ohgign

for which an optimal solution of the proposed model is also an
optimal solution of the covering problem.




Proposed Model

Small remark

Let r < R.

g™

(a) Two spheres of radius r. (b) One sphere of radius r and
one sphere of radius R.

Figure : Two optimal solutions.




Proposed Model

Motivation

e The Gamma Knife radiosurgery planning process.
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Motivation

@ The Gamma Knife radiosurgery planning process.
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Motivation

@ The Gamma Knife radiosurgery planning process.




Proposed Model

Motivation

@ The Gamma Knife radiosurgery planning process.




Proposed Model

Security Region

To avoid a large volume of the spheres on the outside of the target
volume, we define the security region.
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Proposed Model

Security Region

To avoid a large volume of the spheres on the outside of the target
volume, we define the security region.
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Proposed Model

Security Region

To avoid a large volume of the spheres on the outside of the target
volume, we define the security region.




Proposed Model

Results

To present the results, let's define 3 parameters [3]:

@ COV: percentage of T's volume

covered by the spheres;
T,

@ OVERLAP: percentage of T's volume
covered by more than one sphere;

@ MISCOV: percentage of the total
volume of the spheres outside T.




Proposed Model

Results

To present the results, let's define 3 parameters [3]:

@ COV: percentage of T's volume

covered by the spheres;
TN,

@ OVERLAP: percentage of T's volume
covered by more than one sphere;

@ MISCOV: percentage of the total
volume of the spheres outside T.




Proposed Model

Results

To present the results, let's define 3 parameters [3]:

@ COV: percentage of T's volume
covered by the spheres;

T,

@ OVERLAP: percentage of T's volume
covered by more than one sphere;

@ MISCOV: percentage of the total
volume of the spheres outside T.




Proposed Model

Results

To present the results, let's define 3 parameters [3]:

@ COV: percentage of T's volume
covered by the spheres;

T,

@ OVERLAP: percentage of T's volume
covered by more than one sphere;

@ MISCOV: percentage of the total
volume of the spheres outside T.




Proposed Model

Results

Data used in the tests:

@ a parallelepiped with dimensions
14mm x 12mm x 10mm;

@ ¢ =1 for the security region; and

@ spheres of radius 4mm and 2mm.

- J/




Proposed Model

Results

For the parameters, we used
CI = r:

and
ajj =0.5-min{r;,rj}.




Proposed Model

Couenne

Couenne
Algorithm  sB&B
z* 352
|S]| 9
te 20h
t; od
cov 68.12%
miscov 7.66%

overlap 9.03%

- te: time to find solution

- tt: execution time till forced stop




Proposed Model

Bonmin

- 24 spheres of radius 2mm;
- Parameters ¢; modified.

Bonmin
Algorithm B&B
z* 448
|S] 28
t: 390s

cov 84.08%
miscov 9.66%
overlap  10.22%

- t;: total execution time




Proposed Model

Xpress-SLP

- 30 spheres of radius 2mm

Xpress-SLP

Algorithm SLP

z* 496

|S] 34

t: 4s
cov 87.67%
miscov 10.58%
overlap 15.87%

- t;: total execution time




Heuristic

Heuristic

Spheres of larger radius are more interesting in the solution.

Heuristic based on solving the following problem:

X' = x|? > (n+r—a;)?, V1<i<j<n

x'eT, Vi

It considers a fixed set of spheres.




Heuristic

Heuristic

Start with a single sphere or only a few of them, all of the
larger radius;

If the solver returned a solution for this problem, use it as an
initial solution for the next one, which has one more sphere
available. For this sphere, its initial position will be generated
randomically;

If the solver claims the problem is infeasible, reduce the last
added sphere’s radius.
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Heuristic
Results from Ipopt

Ipopt
Algorithm  Interior Points
z* 514
|S]| 29
t: 17s
cov 91.40%
miscov 9.91%
overlap 16.13%

- t;: total execution time




Discretization

Discretization

Let x be a real variable assuming values in the interval [a, b]:
a<x<b.
Discretization:
X=wiA+ -+ WA,
where

@ L is the quantity of points used in the discretization of the
interval [a, b];

@ aslw <---<w <b;
o )\ e{0,1}, Vie{l,...,L};e

o Z,'Lzl)‘i:]"




Discretization

Discretization

In our model, we can apply this technique to the variables which
represent the center of the spheres:

a, < xj < bj.
Using the discretization we have just explained, we have:
i

P i i
X = WgiAe1tooo+ Wi Li )‘k,L; )

where _
Z,'Llil)\i:]-
Ao€{0,1}, Vie{l,..., L}




Discretization

Discretization

It will be used in the calculation of the term ||x' — x/||2, present in
the constraints of the model:

3
[IxF =2 =3 0 = x4)% = () + 2x0x, + (x1)?

k=1




Discretization

Discretization

It will be used in the calculation of the term ||x' — x/||2, present in
the constraints of the model:

3
[IxF =2 = 0 = x4)% = ()7 + 2x0x, + (x1)?

k=1




Discretization

Discretization

It will be used in the calculation of the term ||x' — x/||2, present in
the constraints of the model:

3
b =12 = 300k = X = ()7 + 2xf, + ()

k=1

The term in focus is rewritten as:

(x)? = (WL,1)2 L,l +oee (WL,LL)2 /\L,L;'(




Discretization

Discretization

It will be used in the calculation of the term ||x' — x/||2, present in
the constraints of the model:

3
b =12 = 300k = X = ()7 + 2xf, + ()

k=1

The term in focus is rewritten as:

()2 = (Wpa)? Mg + -+ (W], P N




Discretization

Discretization

It will be used in the calculation of the term ||x' — x/||2, present in
the constraints of the model:

3
[Ix" =12 = 30 = x4)? = () + 2] + ()

k=1

The term in focus is rewritten as:

(x)? = (WL,1)2 L,l +oee (WL,LL)2 /\L,L;'(

Li L

E § :Wkakq kq

p=1qg=1




Discretization

Discretization

It will be used in the calculation of the term ||x' — x/||2, present in
the constraints of the model:

3
[Ix" =12 = 30 = x4)? = () + 2] + ()

k=1

The term in focus is rewritten as:
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Discretization

Linearization

We can linearize the term A, .  replacing it with the variables
k,p k,q TP

ijo iy
zk7p7q - )\k7p k7q
and adding the following constraints to the model:

i

< i

Zk7p7q - )\k7p

iy < M

Zkpa = kg

ij > )\ i
Zkpg = k7p+)‘k,q 1
ij > 0

Zk,p,q




Discretization
Results

Xpress
) 0.2
z* 376
|S]| 19
te 36h

cov 76.81%
miscov  7.27%
overlap  5.01%

- te: time the solution was
found (and subsequent
abortion)




Discretization
Comparison

COUENNE BONMIN Xpress Xpress Ipopt

sB&B BBBB  SLP §=02 Heur
z* 352 448 496 376 514
S| 9 28 34 19 29
t 20 h 390 s 4s 36h 17
cov 68.12 84.08 8767 7681 91.40
miscov 7.66 966 1058 727 991
overlap 9.03 1022 1587 501  16.13

Table : Comparing the best solution found by the tested methods.




Discretization
Parameters

Ipopt
Soll Sol2 Sol3
z* 514 960 1408
|S] 29 22 36
t 17s 10s 112s
cov 91.40 97.25 100
miscov. 991 1345 35.26
overlap 16.13 60.21 80.65
I} 0.5 1 1
€ 1 1 2

- t: execution time
- [3: overlap parameter

- &: security region parameter
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Discretization
Parameters

Ipopt
Soll Sol2 Sol3
z* 514 960 1408
|S] 29 22 36
t 17s 10s 112s
cov 91.40 97.25 100
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- t: execution time
- [3: overlap parameter
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Graph Approach

Graph Approach

Let G = (V, E) be the following graph:
o V={(r,p)|reR, pe P}

@ There is an arc e € E connecting vertices i = (r;, p;) and
J = (rj, pj) if there is a feasible solution containing a sphere of
radius r; centered at point p; and a sphere of radius r;
centered at point p;.




Graph Approach

Graph Approach

Let G = (V, E) be the following graph:
o V={(r,p)|reR, pe P}

@ There is an arc e € E connecting vertices i = (r;, p;) and
J = (rj, pj) if there is a feasible solution containing a sphere of
radius r; centered at point p; and a sphere of radius r;
centered at point p;.

We aim to find the maximum clique in this graph.




Graph Approach

Graph Approach

Maximum-weight clique model:

VI

maxXx E G Yyi

i=1
sit. yi+y; <1, V(i,j)¢E
y € {0,1}V




Graph Approach
Results

6=1 =02 6=2 o6=1
Discret Discret Graph Graph

z* 128 376 432 480
S| 9 19 54 60
t 10h 36h 2s 4s

cov 27.87 76.81 82.75 8245
miscov 2.85 7.27 10.13 6.83
overlap 1.18 5.01 501 21.87

Table : Comparing the solutions obtained in the linearized model and in
the graph approach.




Graph Approach

3D Program

3D Covering
Options  About

2D Vision
icov = 77,41%
B 61% 2D- YZ Plane
loverlap = 10,76% _ .
Pid
2D - XZ Plane o
2D - XY Plane

[Welcome to 3D Covering!

> COPPE
rtiemizemne JFR]



Graph Approach

Future Work

Working with the complement of the graph:

@ Branch and Cut

cuts: violated cliques

yity+y3+..<1

@ Branch and Bound

branching: violated cliques




Graph Approach
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@ More realistic data

130,

125

120

118

.
=
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Graph Approach
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