The Problem of Covering Solids By Spheres of Different Diameters

Renan Vicente Pinto and Nelson Maculan

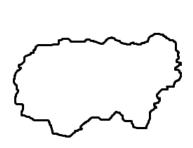
PESC/COPPE - UFRJ

ENS-Cachan, Dec. 16, 2015

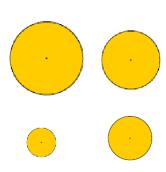
Agenda

- 1 The Covering Problem
- 2 The Packing Problem
- Proposed Model
- 4 Heuristic
- 5 Discretization
- 6 Graph Approach

The Problem



(a) Solid to be covered.



(b) Available spheres sizes.

An Example

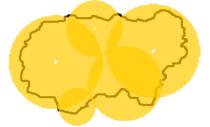


Figure: Example of a covering.

The Covering Problem Definition

The Covering Problem

Given:

- a compact set $T \subset \mathbb{R}^3$,
- a finite set $R \subset \mathbb{R}_+$ of radii,
- a set N indexing the spheres and
- a function $\rho: N \to R$,

we have to find a set of spheres

$$\{ B(x(i), \rho(i)) \mid i \in \mathbb{N} \}$$

of minimum cardinality and covering all the points in T.

The Covering Problem A Formulation

In Liberti et al. 1 , the authors formulated the problem as follows:

$$\begin{aligned} ||x^{i} - p||^{2} &\leq u_{i}(p) \sum_{j \in U} w_{ij} r_{j}^{2} + (1 - u_{i}(p)) M^{2}, \forall i \in N, \forall p \in T \\ &\sum_{j \in U} w_{ij} = 1, \quad \forall i \in N \\ &\sum_{i \in N} u_{i}(p) \geq 1, \quad \forall p \in T \\ &\int_{p \in T} u_{i}(p) dp \geq \epsilon y_{i}, \quad \forall i \in N \\ &\int_{p \in T} u_{i}(p) dp \leq \operatorname{Vol}(T) y_{i}, \quad \forall i \in N \end{aligned}$$

¹L. Liberti, N. Maculan & Y. Zhang. "Optimal configuration of gamma ray machine radiosurgery units: the sphere covering subproblem".

Optimization Letters: Vol. 3, pp. 109-121, 2009.

The Covering Problem

Nonlinear nonconvex mixed-integer infinite programming problem:

$$||x^{i} - p||^{2} \leq u_{i}(p) \sum_{j \in U} w_{ij} r_{j}^{2} + (1 - u_{i}(p)) M^{2}, \forall i \in N, \forall p \in T$$

$$\sum_{j \in U} w_{ij} = 1, \quad \forall i \in N$$

$$\sum_{i \in N} u_{i}(p) \geq 1, \quad \forall p \in T$$

$$\int_{p \in T} u_{i}(p) dp \geq \epsilon y_{i}, \quad \forall i \in N$$

$$\int_{p \in T} u_{i}(p) dp \leq \operatorname{Vol}(T) y_{i}, \quad \forall i \in N$$

The Packing Problem

Characteristics of the packing problem:

- Overlappings are not allowed; and
- the spheres must be totally inside the container.

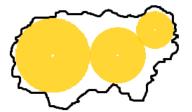


Figure: Example of a packing.

The Packing Problem

The goal is to maximize the density:

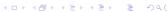
$$density = \frac{\sum_{i} volume(object_{i})}{volume(container)}.$$

Objective function:

$$\max \frac{\sum_{i} \frac{4}{3} \pi \, r_i^3 \, y_i}{\text{volume(container)}}.$$

Removing the constants:

$$\max \sum_{i \in S} r_i^3 y_i$$
.



The Packing Problem A Formulation

For the problem of packing unequal spheres in a 3-dimensional polytope defined by

$$a_m x + b_m y + c_m z \ge d_m, \quad m = 1, \ldots, M,$$

A. Sutou and Y. Dai ¹ used the following variables in their model:

- (a) $x^i \in \mathbb{R}^3$ is the center of sphere i; and
- (b) $w_{ik} \in \{0,1\}$ is set to 1, if sphere i has radius r_k .

¹A. Sutou & Y. Dai. "Global Optimization Approach to Unequal Sphere COPPE Packing Problems in 3D". *Journal of Optimization Theory and Application* UFRJ Vol. 114, No 3, pp. 671-694, 2002. ◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ○臺

In Sutou et al., the authors formulated the problem of packing unequal spheres in a 3-dimensional polytope as follows:

$$\max \frac{4}{3}\pi \sum_{i=1}^{N} \sum_{k=1}^{K} r_{k}^{3} w_{ik}$$

$$\text{s.a} \quad ||x^{i} - x^{j}||^{2} \ge \left(\sum_{k=1}^{K} r_{k} w_{ik} + \sum_{k=1}^{K} r_{k} w_{jk}\right)^{2}, \quad \forall i \ne j$$

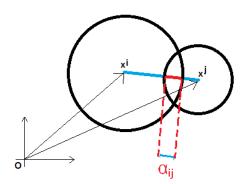
$$|a_{m}x_{i} + b_{m}y_{i} + c_{m}z_{i} - d_{m}|/\sqrt{a_{m}^{2} + b_{m}^{2} + c_{m}^{2}} \ge \sum_{k=1}^{K} r_{k} w_{ik}, \quad \forall i, m$$

$$a_{m}x_{i} + b_{m}y_{i} + c_{m}z_{i} - d_{m} \ge 0, \quad \forall i, \forall m$$

$$\sum_{k=1}^{K} w_{ik} \le 1, \quad \forall i$$

$$w_{ik} \in \{0, 1\}, \quad \forall i, \forall k$$

We propose a model based essentially on the parameters α , which represent the maximum allowed overlap between each pair of spheres.



So the constraints

$$||x^{i}-x^{j}||^{2} \geq (r_{i}+r_{j})^{2}$$

by introducing parameters α become

$$||x^{i}-x^{j}||^{2} \geq (r_{i}+r_{j}-\alpha_{ij})^{2}.$$

But they should only constrain variables associated with spheres used in the packing.

Let $y_i \in \{0,1\}$ assume value 1 if sphere i is packed.

We could have

$$||x^{i}-x^{j}||^{2} \geq (r_{i}+r_{j}-\alpha_{ij})^{2} y_{i} y_{j}.$$

Let $y_i \in \{0, 1\}$ assume value 1 if sphere i is packed.

We could have

$$||x^{i}-x^{j}||^{2} \geq (r_{i}+r_{j}-\alpha_{ij})^{2} y_{i} y_{j}.$$

But to avoid the multiplication of variables, we will use

$$||x^{i}-x^{j}||^{2} \geq (r_{i}+r_{j}-\alpha_{ij})^{2}(y_{i}+y_{j}-1).$$

The Covering Problem Proposed Model

Proposed Model for the Covering Problem

$$\max \quad \sum_{i=1}^{n} c_i \, y_i$$

$$||x^i - x^j||^2 \ge (r_i + r_j - \alpha_{ij})^2 (y_i + y_j - 1), \quad \forall \ 1 \le i < j \le n$$

$$x^i \in T, \quad \forall i$$

$$\mathbf{y} \in \{0,1\}^n$$

The Covering Problem Proposed Model

Proposed Model for the Covering Problem

$$\max \sum_{i=1}^{n} \frac{c_i}{c_i} y_i$$

$$||x^i - x^j||^2 \ge (r_i + r_j - \alpha_{ij})^2 (y_i + y_j - 1), \quad \forall \ 1 \le i < j \le n$$

$$x^i \in T, \quad \forall i$$

 $y \in \{0,1\}^n$

Parameters Existence Theorem

There are

$$\{\alpha_{ij} \ge 0\}_{1 \le i < j \le n}$$

and

$$\left\{c_i \geq 0\right\}_{1 \leq i \leq n}$$

for which an optimal solution of the **proposed model** is also an optimal solution of the **covering problem**.

Small remark

Let r < R.

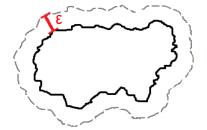
(a) Two spheres of radius r.

(b) One sphere of radius r and one sphere of radius R.

Figure: Two optimal solutions.

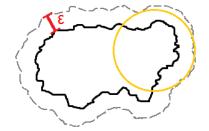
Security Region

To avoid a large volume of the spheres on the outside of the target volume, we define the security region.



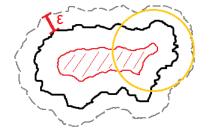
Security Region

To avoid a large volume of the spheres on the outside of the target volume, we define the security region.

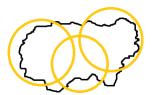


Security Region

To avoid a large volume of the spheres on the outside of the target volume, we define the security region.



- COV: percentage of T's volume covered by the spheres;
- OVERLAP: percentage of T's volume covered by more than one sphere;
- MISCOV: percentage of the total volume of the spheres outside T.



- COV: percentage of T's volume covered by the spheres;
- OVERLAP: percentage of T's volume covered by more than one sphere;
- MISCOV: percentage of the total volume of the spheres outside T.

- COV: percentage of T's volume covered by the spheres;
- OVERLAP: percentage of T's volume covered by more than one sphere;
- MISCOV: percentage of the total volume of the spheres outside T.

- COV: percentage of T's volume covered by the spheres;
- OVERLAP: percentage of T's volume covered by more than one sphere;
- MISCOV: percentage of the total volume of the spheres outside T.

Data used in the tests:

- a parallelepiped with dimensions
 14mm x 12mm x 10mm;
- \bullet $\epsilon=1$ for the security region; and
- spheres of radius 4mm and 2mm.

For the parameters, we used

$$c_i = r_i^3$$

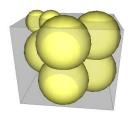
and

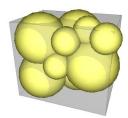
$$\alpha_{ij} = 0.5 \cdot min\{r_i, r_j\} .$$

Couenne

	Couenne
Algorithm	sB&B
z^*	352
S	9
t_e	20h
t_t	9d
cov	68.12%
miscov	7.66%
overlap	9.03%

- t_e: time to find solution
- t_t : execution time till forced stop



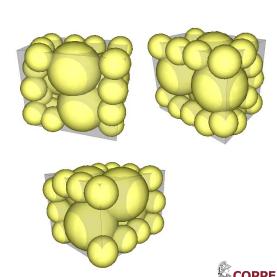


Bonmin

- 24 spheres of radius 2mm;
- Parameters c_i modified.

	Bonmin
Algorithm	B&B
z^*	448
5	28
t_t	390s
cov	84.08%
miscov	9.66%
overlap	10.22%

- t_t : total execution time

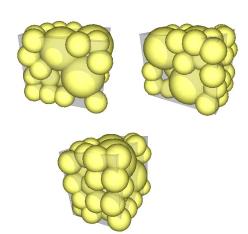


Xpress-SLP

- 30 spheres of radius 2mm

	Xpress-SLP
Algorithm	SLP
z^*	496
5	34
t_t	4s
COV	87.67%
miscov	10.58%
overlap	15.87%

- tt: total execution time



Heuristic

Hypothesis

Spheres of larger radius are more interesting in the solution.

Heuristic based on solving the following problem:

$$||x^i - x^j||^2 \ge (r_i + r_j - \alpha_{ij})^2, \quad \forall \ 1 \le i < j \le n$$

 $x^i \in T, \quad \forall i$

It considers a fixed set of spheres.

Heuristic

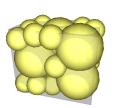
Idea:

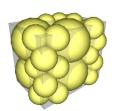
- Start with a single sphere or only a few of them, all of the larger radius;
- If the solver returned a solution for this problem, use it as an initial solution for the next one, which has one more sphere available. For this sphere, its initial position will be generated randomically;
- If the solver claims the problem is infeasible, reduce the last added sphere's radius.

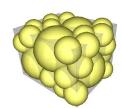
Results from Ipopt

lpopt		
Interior Points		
514		
29		
17s		
91.40%		
9.91%		
16.13%		

- t+: total execution time







Let x be a real variable assuming values in the interval [a,b]:

$$a \le x \le b$$
.

Discretization:

$$x = w_1 \lambda_1 + \cdots + w_L \lambda_L ,$$

where

- *L* is the quantity of points used in the discretization of the interval [*a*, *b*];
- $a \le w_1 < \cdots < w_L \le b$;
- $\lambda_i \in \{0,1\}, \quad \forall i \in \{1,\ldots,L\}$; e
- $\bullet \ \sum_{i=1}^L \lambda_i = 1 \ .$

In our model, we can apply this technique to the variables which represent the center of the spheres:

$$a_k^i \leq x_k^i \leq b_k^i$$
.

Using the discretization we have just explained, we have:

$$x_k^i = w_{k,1}^i \lambda_{k,1}^i + \cdots + w_{k,L_k^i}^i \lambda_{k,L_k^i}^i,$$

where

$$\sum_{i=1}^{l_k^i} \lambda_i = 1$$

$$\lambda_i \in \{0, 1\}, \quad \forall i \in \{1, \dots, l_k^i\}$$

It will be used in the calculation of the term $||x^i - x^j||^2$, present in the constraints of the model:

$$||x^{i}-x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i}-x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2x_{k}^{i}x_{k}^{j} + (x_{k}^{j})^{2}$$

It will be used in the calculation of the term $||x^i - x^j||^2$, present in the constraints of the model:

$$||x^{i}-x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i}-x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2x_{k}^{i}x_{k}^{j} + (x_{k}^{j})^{2}$$

It will be used in the calculation of the term $||x^i - x^j||^2$, present in the constraints of the model:

$$||x^{i}-x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i}-x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2x_{k}^{i}x_{k}^{j} + (x_{k}^{j})^{2}$$

$$(x_k^i)^2 = (w_{k,1}^i)^2 \lambda_{k,1}^i + \dots + (w_{k,L_k^i}^i)^2 \lambda_{k,L_k^i}^i$$

It will be used in the calculation of the term $||x^i - x^j||^2$, present in the constraints of the model:

$$||x^{i}-x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i}-x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2x_{k}^{i}x_{k}^{j} + (x_{k}^{j})^{2}$$

$$(x_k^i)^2 = (w_{k,1}^i)^2 \lambda_{k,1}^i + \dots + (w_{k,L_k^i}^i)^2 \lambda_{k,L_k^i}^i$$

It will be used in the calculation of the term $||x^i - x^j||^2$, present in the constraints of the model:

$$||x^{i} - x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i} - x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2x_{k}^{i}x_{k}^{j} + (x_{k}^{j})^{2}$$

$$(x_k^i)^2 = (w_{k,1}^i)^2 \lambda_{k,1}^i + \dots + (w_{k,L_k^i}^i)^2 \lambda_{k,L_k^i}^i$$

$$x_{k}^{i}x_{k}^{j} = \sum_{k=1}^{L_{k}^{i}} \sum_{k=1}^{L_{k}^{j}} w_{k,p}^{i} w_{k,q}^{i} \lambda_{k,p}^{i} \lambda_{k,q}^{i}$$

It will be used in the calculation of the term $||x^i - x^j||^2$, present in the constraints of the model:

$$||x^{i} - x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i} - x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2x_{k}^{i}x_{k}^{j} + (x_{k}^{j})^{2}$$

$$(x_k^i)^2 = (w_{k,1}^i)^2 \lambda_{k,1}^i + \dots + (w_{k,L_k^i}^i)^2 \lambda_{k,L_k^i}^i$$

$$x_{k}^{i}x_{k}^{j} = \sum_{k=1}^{L_{k}^{i}} \sum_{k=1}^{L_{k}^{j}} w_{k,p}^{i} w_{k,q}^{i} \lambda_{k,p}^{i} \lambda_{k,q}^{i}$$

Linearization

We can linearize the term $\lambda_{k,p}^i \lambda_{k,q}^i$ replacing it with the variables

$$z_{k,p,q}^{i,j} = \lambda_{k,p}^i \lambda_{k,q}^i$$

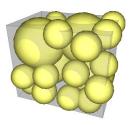
and adding the following constraints to the model:

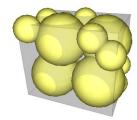
$$z_{k,p,q}^{i,j} \leq \lambda_{k,p}^{i}$$
 $z_{k,p,q}^{i,j} \leq \lambda_{k,q}^{i}$
 $z_{k,p,q}^{i,j} \geq \lambda_{k,p}^{i} + \lambda_{k,q}^{i} - 1$
 $z_{k,p,q}^{i,j} \geq 0$

Results

	Xpress		
δ	0.2		
Z^*	376		
S	19		
t_e	36h		
cov	76.81%		
miscov	7.27%		
overlap	5.01%		

 t_e: time the solution was found (and subsequent abortion)





Comparison

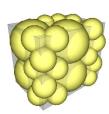
	COUENNE	BONMIN	Xpress	Xpress	lpopt
	sB&B	B-BB	SLP	$\delta = 0.2$	Heur
z^*	352	448	496	376	514
5	9	28	34	19	29
t	20 h	390 s	4 s	36h	17 s
cov	68.12	84.08	87.67	76.81	91.40
miscov	7.66	9.66	10.58	7.27	9.91
overlap	9.03	10.22	15.87	5.01	16.13

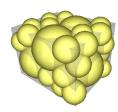
Table: Comparing the best solution found by the tested methods.

Parameters

		lpopt	
	Sol 1	Sol 2	Sol 3
Z^*	514	960	1408
5	29	22	36
t	17s	10s	112s
COV	91.40	97.25	100
miscov	9.91	13.45	35.26
overlap	16.13	60.21	80.65
β	0.5	1	1
ε	1	1	2

- t: execution time
- β : overlap parameter
- ε : security region parameter





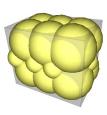
Parameters

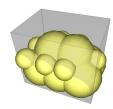
		lpopt	
	Sol 1	Sol 2	Sol 3
Z^*	514	960	1408
5	29	22	36
t	17s	10s	112s
COV	91.40	97.25	100
miscov	9.91	13.45	35.26
overlap	16.13	60.21	80.65
β	0.5	1	1
ε	1	1	2

- t: execution time

- β : overlap parameter

- ε : security region parameter





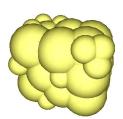
Parameters

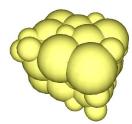
		Ipopt	
	Sol 1	Sol 2	Sol 3
z^*	514	960	1408
5	29	22	36
t	17s	10s	112s
COV	91.40	97.25	100
miscov	9.91	13.45	35.26
overlap	16.13	60.21	80.65
β	0.5	1	1
ε	1	1	2

- t: execution time

- β : overlap parameter

- ε : security region parameter





Graph Approach

Let G = (V, E) be the following graph:

- $V = \{ (r, p) \mid r \in R, p \in P \};$
- There is an arc $e \in E$ connecting vertices $i = (r_i, p_i)$ and $j = (r_j, p_j)$ if there is a feasible solution containing a sphere of radius r_i centered at point p_i and a sphere of radius r_j centered at point p_i .

Graph Approach

Let G = (V, E) be the following graph:

- $V = \{ (r, p) \mid r \in R, p \in P \};$
- There is an arc $e \in E$ connecting vertices $i = (r_i, p_i)$ and $j = (r_j, p_j)$ if there is a feasible solution containing a sphere of radius r_i centered at point p_i and a sphere of radius r_j centered at point p_j .

We aim to find the maximum clique in this graph.

Graph Approach

Maximum-weight clique model:

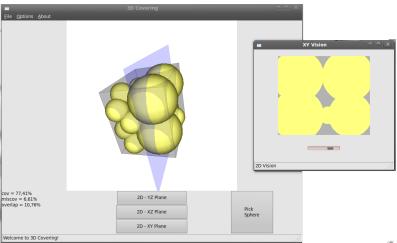
$$\max \sum_{i=1}^{|V|} c_i \, y_i$$
 $s.t. \quad y_i + y_j \leq 1 \,, \quad orall (i,j)
otin E$ $\mathbf{y} \in \{0,1\}^{|V|}$

Results

	$\delta = 1$	$\delta = 0.2$	$\delta = 2$	$\delta = 1$
	Discret	Discret	Graph	Graph
z*	128	376	432	480
5	9	19	54	60
t	10h	36h	2s	4s
cov	27.87	76.81	82.75	82.45
miscov	2.85	7.27	10.13	6.83
overlap	1.18	5.01	5.91	21.87

Table: Comparing the solutions obtained in the linearized model and in the graph approach.

3D Program



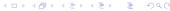
Future Work

Working with the complement of the graph:

 Branch and Cut cuts: violated cliques

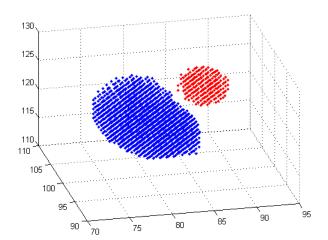
$$y_1 + y_2 + y_3 + \dots \le 1$$

 Branch and Bound branching: violated cliques



Future Work

More realistic data



References

- [1] L. Liberti, N. Maculan & Y. Zhang. "Optimal configuration of gamma ray machine radiosurgery units: the sphere covering subproblem". *Optimization Letters*: Vol. 3, pp. 109-121, 2009.
- [2] A. Sutou & Y. Dai. "Global Optimization Approach to Unequal Sphere Packing Problems in 3D". Journal of Optimization Theory and Applications: Vol. 114, No 3, pp. 671-694, 2002.
- [3] R. Quirino & A. F. Macambira & L. Cabral & R. Pinto.
 "The Discrete Ellipsoid Covering problem: a Discrete Geometric Programming Approach". Discrete Applied Mathematics, 2012.

