The Euclidean Steiner Tree Problem in \mathbb{R}^n Mathematical Models

N. Maculan[‡], V. Costa[§]

Universidade Federal do Rio de Janeiro COPPE – Programa de Engenharia de Sistemas

[‡]maculan@cos.ufrj.br [§]virscosta@gmail.com

Maculan, Costa

Problem Definition

2 Properties

③ First Formulation

4 Second Formulation

5 Second Formulation: Experiments on Platonic Solids

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Triangle: Three given points

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Triangle: Three given points

Torricelli (1647) pointed out a solution when the triangle formed by the three given points does not have an angle $\geq 120^{\circ}$.

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Triangle: Three given points

Torricelli (1647) pointed out a solution when the triangle formed by the three given points does not have an angle $\geq 120^{\circ}$.

Heinen (1837) apparently is the first to prove that, for a triangle in which an angle is $\geq 120^{\circ}$, the vertex associated with this angle is the minimizing point.

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

 $\|\bar{\lambda}\|$

$$\begin{aligned} ||\overrightarrow{XA}|| &= \sqrt{(x_a - x)^2 + (y_a - y)^2} \\ ||\overrightarrow{XB}|| &= \sqrt{(x_b - x)^2 + (y_b - y)^2} \\ ||\overrightarrow{XC}|| &= \sqrt{(x_c - x)^2 + (y_c - y)^2} \\ \nabla \mathcal{D} &= \begin{pmatrix} \frac{\partial \mathcal{D}}{\partial x} \\ \frac{\partial \mathcal{D}}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{aligned}$$

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Fermat's Challenge as an Optimization Problem

Instituto Alberto Luiz Coimbra de Pós-Gradusção e Pesquisa de Engenharia

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Fermat's Challenge as an Optimization Problem

Three Forces in Equilibrium

$$\nabla \mathcal{D} = \vec{r} + \vec{s} + \vec{t} = \vec{0}$$

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called Steiner points.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called Steiner points.

This is a very well known problem in combinatorial optimization.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called Steiner points.

This is a very well known problem in combinatorial optimization. This problem has been shown to be NP-Hard.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called Steiner points.

This is a very well known problem in combinatorial optimization.

This problem has been shown to be NP-Hard.

All distances are considered to be Euclidean.

An example in \mathbb{R}^3 : Icosahedron

- r our or a substance of the substance

Number of Steiner Points

Given p points $x^i \in \mathbb{R}^n$, i = 1, 2, ..., p, the maximum number of Steiner points is p - 2.

Number of Steiner Points

Given p points $x^i \in \mathbb{R}^n$, i = 1, 2, ..., p, the maximum number of Steiner points is p - 2.

Degree of Steiner Points

A nondegenerated Steiner point has degree (valence) equal to 3.

Number of Steiner Points

Given p points $x^i \in \mathbb{R}^n$, i = 1, 2, ..., p, the maximum number of Steiner points is p - 2.

Degree of Steiner Points

A nondegenerated Steiner point has degree (valence) equal to 3.

Steiner Points Edges

The edges emanating from a nondegenerated Steiner point *lie in a plane* and have mutual angle equal to 120° .

Steiner Topology

It is a topology that satisfy all the Steiner Tree properties.

Steiner Topology

It is a topology that satisfy all the Steiner Tree properties.

Number of Topologies (Gilbert and Pollack)

The total number of different topologies with k Steiner points is

$$C_{p,k+2}\frac{(p+k-2)!}{k!2^k},$$

where p is the number of given points in \mathbb{R}^n .

Steiner Topology

It is a topology that satisfy all the Steiner Tree properties.

Number of Topologies (Gilbert and Pollack)

The total number of different topologies with k Steiner points is

$$C_{p,k+2}\frac{(p+k-2)!}{k!2^k},$$

where p is the number of given points in \mathbb{R}^n .

Full Steiner Topologies (k = p - 2)

The total number of different topologies with k = p - 2 Steiner points is

$$1 \cdot 3 \cdot 5 \cdot 7 \dots (2p-5) = (2p-5)!!.$$

Example of Local Optimization

Finding the best solution...

$$\begin{array}{l} \mbox{Minimize } ||x^3-x^5||+||x^2-x^5||+||x^5-x^6||+||x^1-x^6||+||x^4-x^6||\\ \mbox{subject to } x^5 \mbox{ and } x^6 \in \mathbb{R}^n. \end{array}$$

Instituto Alberto Luiz Coimbra de Pós-Gradução o Persoulas de Engenharia

6 given points.

4 Steiner points.

6 given points.

4 Steiner points.

All possible edges among Steiner points.

6 given points.

4 Steiner points.

All possible edges among Steiner points.

All possible connections between a given point and a Steiner point.

6 given points.

4 Steiner points.

All possible edges among Steiner points.

All possible connections between a given point and a Steiner point.

All possible edges.

6 given points.

4 Steiner points.

All possible edges among Steiner points.

All possible connections between a given point and a Steiner point.

All possible edges.

An example of a set of possible edges.

Given p points in \mathbb{R}^n , we define a especial graph G = (V, E).

First Formulation

$$(P): \text{ Minimize } \sum_{[i,j]\in E} ||x^i - x^j||y_{ij} \text{ subject to } \tag{1}$$

$$\sum_{j \in S} y_{ij} = 1, \quad i \in P = \{1, 2, \dots, p\},$$
(2)

$$\sum_{\langle i,k \in S} y_{kj} = 1, \ j \in S - \{p+1\},$$
(3)

$$x^{i} \in \mathbb{R}^{n}, \ i \in S,$$
 (4)
 $y_{ij} \in \{0, 1\}, \ [i, j] \in E,$ (5)

where $||x^i - x^j|| = \sqrt{\sum_{l=1}^n (x_l^i - x_l^j)^2}$ is the Euclidean distance between x^i and x^j .

Instituto Alberto Luiz Coimbra de Dos Graduação e Pesquias de Engenharia

First Formulation: another example

If we don't considerer

$$\sum_{k < j, k \in S} y_{kj} = 1, \ j \in S - \{p+1\}$$

First Formulation (another way to write)

$$(\mathsf{P}): \quad \mathsf{Minimize} \ \sum_{[i,j]\in\mathsf{E}} (\mathsf{t}_{ij}^2-\mathsf{u}_{ij}^2) \ \text{subject to} \tag{6}$$

$$\begin{aligned} |x^{i} - x^{j}|| - (t_{ij} + u_{ij}) &\leq 0, \quad [i, j] \in E, \\ y_{ij} - (t_{ij} - u_{ij}) &= 0, \quad [i, j] \in E, \end{aligned}$$
(7)

$$\sum_{\substack{e \in S}} y_{ij} = 1, \quad i \in P = \{1, 2, \dots, p\},$$
(9)

$$\sum_{i\in P} y_{ij} + \sum_{k< j, k\in S} y_{kj} + \sum_{k> j, k\in S} y_{jk} = 3, \ j\in S = \{p+1,\ldots, 2p-2\},$$
(10)

$$\sum_{k < j, k \in S} y_{kj} = 1, \ j \in S - \{p+1\},$$
(11)

$$x^i \in \mathbb{R}^n, \ i \in S,$$
 (12)

$$y_{ij} \in \{0,1\}, \ [i,j] \in E.$$
 (13)

First Formulation: Lagrangian Relaxation

$$\begin{split} \mathcal{L}(x,y,t,u,\alpha,\beta) &= \sum_{[i,j]\in \mathcal{E}} (t_{ij}^2 - u_{ij}^2) + \sum_{[i,j]\in \mathcal{E}} [||x^i - x^j|| - (t_{ij} + u_{ij})]\alpha_{ij} + \\ &+ \sum_{[i,j]\in \mathcal{E}} [y_{ij} - (t_{ij} - u_{ij})]\beta_{ij} \end{split}$$

or

$$\begin{split} \mathcal{L}(x,y,t,u,\alpha,\beta) &= \sum_{[i,j]\in \mathcal{E}} [t_{ij}^2 - u_{ij}^2 - (\alpha_{ij} + \beta_{ij})t_{ij} - (\alpha_{ij} - \beta_{ij})u_{ij}] + \\ &+ \sum_{[i,j]\in \mathcal{E}} \alpha_{ij} ||x^i - x^j|| + \sum_{[i,j]\in \mathcal{E}} \beta_{ij}y_{ij}, \end{split}$$

where

 $\alpha_{ij} \ge 0$ is the dual variable associated to constraint (7). $\beta_{ii} \in R$ is the dual variable associated to constraint (8).

Instituto Alberto Luiz Coimbra de UFRS

$$\mathcal{D}(\alpha,\beta) = \text{ minimum } \{\mathcal{L}(x,y,t,u,\alpha,\beta) \text{ subject to } (15) - (20)\}$$
(14)

$$\sum_{j \in S} y_{ij} = 1, \quad i \in P,$$
(15)

$$\sum_{i \in P} y_{ij} + \sum_{k < j, k \in S} y_{kj} + \sum_{k > j, k \in S} y_{jk} = 3, \ j \in S,$$
(16)

$$\sum_{\langle j,k\in S} y_{kj} = 1, \ j\in S - \{p+1\},$$
(17)

$$y_{ij} \in \{0,1\}, \ [i,j] \in E,$$
 (18)

$$0 \le t_{ij} + u_{ij} \le M, \tag{19}$$

$$x^i \in \mathbb{R}^n, \ i \in S$$
 (20)

where $M = maximum \{ ||x^i - x^j|| \text{ for } 1 \leq i \leq j \leq p \}.$

$$\mathcal{D}(\alpha,\beta) = \text{ minimum } \{\mathcal{L}(x,y,t,u,\alpha,\beta) \text{ subject to } (15) - (20)\}$$
(14)

$$\sum_{j \in S} y_{ij} = 1, \quad i \in P,$$
(15)

$$\sum_{i \in P} y_{ij} + \sum_{k < j, k \in S} y_{kj} + \sum_{k > j, k \in S} y_{jk} = 3, \ j \in S,$$
(16)

$$\sum_{\langle j,k\in S} y_{kj} = 1, \ j\in S - \{p+1\},$$
(17)

$$y_{ij} \in \{0,1\}, [i,j] \in E,$$
 (18)

$$0 \le t_{ij} + u_{ij} \le M,\tag{19}$$

$$x^i \in R^n, \ i \in S$$
 (20)

where $M = maximum \{ ||x^i - x^j|| \text{ for } 1 \leq i \leq j \leq p \}.$

We define

$$\mathcal{D}_{1}(t, u, \alpha, \beta) = \min \left\{ \sum_{[i,j] \in \mathcal{E}} [t_{ij}^{2} - u_{ij}^{2} - (\alpha_{ij} + \beta_{ij})t_{ij} - (\alpha_{ij} - \beta_{ij})u_{ij}] \mid s.t. (19) \right\},$$

$$\mathcal{D}(\alpha,\beta) = \text{ minimum } \{\mathcal{L}(x,y,t,u,\alpha,\beta) \text{ subject to } (15) - (20)\}$$
(14)

$$\sum_{j \in S} y_{ij} = 1, \quad i \in P,$$
(15)

$$\sum_{i \in P} y_{ij} + \sum_{k < j, k \in S} y_{kj} + \sum_{k > j, k \in S} y_{jk} = 3, \ j \in S,$$
(16)

$$\sum_{\langle j,k \in S} y_{kj} = 1, \ j \in S - \{p+1\},$$
(17)

$$y_{ij} \in \{0,1\}, [i,j] \in E,$$
 (18)

$$0 \le t_{ij} + u_{ij} \le M,\tag{19}$$

$$x^i \in R^n, \ i \in S$$
 (20)

where $M = maximum \{ ||x^i - x^j|| \text{ for } 1 \leq i \leq j \leq p \}.$

We define

$$\mathcal{D}_{2}(x,\alpha) = \min \left\{ \sum_{[i,j] \in E} \alpha_{ij} ||x^{i} - x^{j}|| \mid s.t. (20) \right\},\$$

$$\mathcal{D}(\alpha,\beta) = \min \{\mathcal{L}(x,y,t,u,\alpha,\beta) \text{ subject to } (15) - (20)\}$$
(14)

$$\sum_{j \in S} y_{ij} = 1, \quad i \in P,$$
(15)

$$\sum_{i \in P} y_{ij} + \sum_{k < j, k \in S} y_{kj} + \sum_{k > j, k \in S} y_{jk} = 3, \ j \in S,$$
(16)

$$\sum_{\langle j,k \in S} y_{kj} = 1, \ j \in S - \{p+1\},$$
(17)

$$y_{ij} \in \{0,1\}, [i,j] \in E,$$
 (18)

$$0 \le t_{ij} + u_{ij} \le M,\tag{19}$$

$$x^i \in \mathbb{R}^n, \ i \in S$$
 (20)

where $M = maximum \{ ||x^i - x^j|| \text{ for } 1 \leq i \leq j \leq p \}.$

We define

$$\mathcal{D}_{3}(y,\beta) = \min \left\{ \sum_{[i,j] \in E} \beta_{ij} y_{ij} \mid s.t. \ (15) - (18) \right\},\$$

$$\mathcal{D}(\alpha,\beta) = \text{ minimum } \{\mathcal{L}(x,y,t,u,\alpha,\beta) \text{ subject to } (15) - (20)\}$$
(14)

$$\sum_{j \in S} y_{ij} = 1, \quad i \in P, \tag{15}$$

$$\sum_{i \in P} y_{ij} + \sum_{k < j, k \in S} y_{kj} + \sum_{k > j, k \in S} y_{jk} = 3, \ j \in S,$$
(16)

$$\sum_{\langle j,k \in S} y_{kj} = 1, \ j \in S - \{p+1\},$$
(17)

$$y_{ij} \in \{0,1\}, [i,j] \in E,$$
 (18)

$$0 \le t_{ij} + u_{ij} \le M, \tag{19}$$

$$x^i \in \mathbb{R}^n, \ i \in S$$
 (20)

where $M = maximum \{ ||x^i - x^j|| \text{ for } 1 \leq i \leq j \leq p \}.$

Thus we can write

$$\mathcal{D}(\alpha,\beta) = \mathcal{D}_1(t,u,\alpha,\beta) + \mathcal{D}_2(x,\alpha) + \mathcal{D}_3(y,\beta).$$

Instituto Alberto Luiz Coimbra de UFRJ

$$\mathcal{D}(\alpha,\beta) = \text{ minimum } \{\mathcal{L}(x,y,t,u,\alpha,\beta) \text{ subject to } (15) - (20)\}$$
(14)

$$\sum_{j \in S} y_{ij} = 1, \quad i \in P,$$
(15)

$$\sum_{i \in P} y_{ij} + \sum_{k < j, k \in S} y_{kj} + \sum_{k > j, k \in S} y_{jk} = 3, \ j \in S,$$
(16)

$$\sum_{\substack{\langle j,k\in S}} y_{kj} = 1, \ j\in S - \{p+1\},$$
(17)

$$y_{ij} \in \{0,1\}, [i,j] \in E,$$
 (18)

$$0 \le t_{ij} + u_{ij} \le M,\tag{19}$$

$$c^i \in R^n, \ i \in S$$
 (20)

where $M = maximum \{ ||x^i - x^j|| \text{ for } 1 \leq i \leq j \leq p \}.$

The Dual Problem will be

Maximize
$$\mathcal{D}(\alpha, \beta)$$
 subject to (21)

$$\alpha \ge 0, \ [i,j] \in E, \tag{22}$$

$$\beta \in R, \ [i,j] \in E. \tag{23}$$

The Lagrangian Relaxation and The Dual Program were proposed by N. Maculan, P. Michelon and A. E. Xavier, in The Euclidean Steiner problem in \mathbb{R}^n : A mathematical programming formulation, Annals of Operations Research, vol. 96, pp. 209-220, 2000.

The Idea

To improve the enumeration scheme presented by Smith^a, by the inclusion of **lower bounds** which are obtained from the Dual Problem Solution.

^aW. D. Smith, *How to find Steiner minimal trees in Euclidean d-space*, Algorithmica, vol. 7, pp. 137-177,1992.

Second Formulation

$$(P): \mbox{ Minimize } \sum_{[i,j]\in E} d_{ij} \mbox{ subject to } \mbox{ (24)}$$

$$d_{ij} \ge ||a^i - x^j|| - M(1 - y_{ij}), \ [i, j] \in E_1,$$
 (25)

$$d_{ij} \geq ||x^{i} - x^{j}|| - M(1 - y_{ij}), \ [i, j] \in E_{2},$$
(26)

$$d_{ij} \geq 0, \ [i,j] \in E \tag{27}$$

$$\sum_{i \in S} y_{ij} = 1, \quad i \in P, \tag{28}$$

$$\sum_{\langle j,i\in S} y_{kj} = 1, \ j\in S - \{p+1\},$$
⁽²⁹⁾

$$\sum_{i \in P} y_{ij} + \sum_{k < j, k \in S} y_{kj} + \sum_{k > j, k \in S} y_{jk} = 3, \ j \in S,$$
(30)

$$x^i \in \mathbb{R}^n, \ i \in S,$$
 (31)

$$y_{ij} \in \{0,1\}, \quad [i,j] \in E,$$
 (32)
 $d_{ij} \in \mathbb{R}.$ (33)

$$d_{ij} \in \mathbb{R}.$$

We consider
$$\begin{cases} ||x^{i} - x^{j}|| \approx \sqrt{\sum_{l=1}^{n} (x_{l}^{i} - x_{l}^{j})^{2} + \lambda^{2}} \\ M = maximum\{||a^{i} - a^{j}|| \text{ for } 1 \leqslant i \leqslant j \leqslant p\}, \\ E_{1} = \{[i, j]|i \in P, \ j \in S\}, E_{2} = \{[i, j]|i \in S, \ j \in S\} \text{ e } E = E_{1} \cup E_{2} \end{cases}$$

Second Formulation (First Property)

If $\bar{x}^i \in \mathbb{R}^n$, $j \in S$ and $\bar{y}_{ij} \in \{0, 1\}$, $[i, j] \in E$ is an optimal solution, then $d_{ij} = ||a^i - \bar{x}^j|| \ge 0$ or $d_{ij} = 0$, for all $[i, j] \in E_1$ and $d_{ij} = ||\bar{x}^i - \bar{x}^j|| \ge 0$ or $d_{ij} = 0$, for all $[i, j] \in E_2$.

Second Formulation (Second Property)

 $y_{ij} \in \{0, 1\}, [i, j] \in E$ is associated with a full Steiner Topology if, and only if, the following equations are satisfied:

$$\sum_{j \in S} y_{ij} = 1, \ i \in P,$$

 $\sum_{k < j, k \in S} y_{kj} = 1, \ j \in S - \{p+1\}$
 $\sum_{i \in P} y_{ij} + \sum_{k < j, k \in S} y_{kj} + \sum_{k > j, k \in S} y_{jk} = 3, \ j \in S,$

Pós-Graduação e Pesquisa de Engenharia 🛛 🖬 🕇 🔪

Note that...

When we consider

$$||x^i - x^j|| \approx \sqrt{\sum_{l=1}^n (x_l^i - x_l^j)^2 + \lambda^2},$$

error propagations may happen.

Note that...

When we consider

$$||x^i - x^j|| \approx \sqrt{\sum_{l=1}^n (x_l^i - x_l^j)^2 + \lambda^2},$$

error propagations may happen.

Note that...

When we consider

$$||x^{i}-x^{j}||\approx\sqrt{\sum_{l=1}^{n}(x_{l}^{i}-x_{l}^{j})^{2}+\lambda^{2}},$$

error propagations may happen.

Second Formulation: One Solution for a Tetrahedron

Number of Points (Green): 4 Number of Steiner Points (Red): 2 Objective Function: 2.43911 Execution Time: 3.27 s

Second Formulation: One Solution for an Octahedron

Number of Points (Green): 6 Number of Steiner Points (Red): 4 Objective Function: 2.86801 Execution Time: 2.22 min

Second Formulation: One Solution for a Cube

Number of Points (Green): 8 Number of Steiner Points (Red): 6 Objective Function: 3.57735 Execution Time: 3 h

Instituto Alberto Luiz Coimbra de UFR

Second Formulation: One Solution for an Icosahedron

Number of Points (Green): 12 Number of Steiner Points (Red): 10 Objective Function: 4.90531 Execution Time: 48 h (not finished).

Pos-Graduação e Pesquisa de Engenharia 🛛 🕶 🗉 🔹 🐝

Thank you!

