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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Triangle: Three given points

A

B

C

X
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120◦

Torricelli (1647) pointed out a solution
when the triangle formed by the three
given points does not have an angle
≥ 120◦.

Heinen (1837) apparently is the first to
prove that, for a triangle in which an
angle is ≥ 120◦, the vertex associated
with this angle is the minimizing point.
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

A

B

C

αX

Minimize D = ||
−→
XA||+ ||

−→
XB||+ ||

−→
XC ||

The solution is given when

∇D = 0.
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

Min D = ||
−→
XA||+||

−→
XB||+||

−→
XC ||

A (xa, ya)

B (xb, yb)

C (xc, yc)

X (x, y)

||
−→
XA|| =

√
(xa − x)2 + (ya − y)2

||
−→
XB|| =

√
(xb − x)2 + (yb − y)2

||
−→
XC || =

√
(xc − x)2 + (yc − y)2

∇D =


∂D
∂x

∂D
∂y

 =

(
0
0

)
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

Min D = ||
−→
XA||+||

−→
XB||+||

−→
XC ||

A (xa, ya)

B (xb, yb)

C (xc, yc)

X (x, y)


∂D
∂x

∂D
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xa − x

||
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xb − x

||
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

Min D = ||
−→
XA||+||

−→
XB||+||

−→
XC ||

A

B

C

X

~s

~t~r

α

Three Forces in Equilibrium

∇D = ~r + ~s + ~t = ~0
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

Three Forces in Equilibrium
(0◦ < θ, β < 90◦)

||~r1|| = ||~t1|| ⇒ cos(θ) = cos(β)

⇒ θ = β

||~r2 + ~t2|| = ||~s|| ⇒ sin(θ) + sin(β) = 1

⇒ sin(θ) = sin(β) =
1
2

⇒ θ = β = 30◦

α = 90◦ + β ⇒ α = 120◦.
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Problem Definition

Now, consider p given points in Rn.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called
Steiner points.
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Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called
Steiner points.

This is a very well known problem in combinatorial optimization.

This problem has been shown to be NP-Hard.

All distances are considered to be Euclidean.
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Problem Definition

Some examples of Steiner points in R2

1 2

3

4

1 2

34

5

6

1

2

3

4

5

6

1

2

34

5 7

86

1

2

3

4

5

6 Given point

Steiner point
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Problem Definition

An example in R3: Icosahedron
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Properties

Number of Steiner Points

Given p points x i ∈ Rn, i = 1, 2, . . . , p, the maximum number of Steiner points is p− 2.

Degree of Steiner Points

A nondegenerated Steiner point has degree (valence) equal to 3.

Steiner Points Edges

The edges emanating from a nondegenerated Steiner point lie in a plane and have
mutual angle equal to 120◦.
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Steiner Topology

Steiner Topology

It is a topology that satisfy all the Steiner Tree properties.

Number of Topologies (Gilbert and Pollack)

The total number of different topologies with k Steiner points is

Cp,k+2
(p + k − 2)!

k!2k
,

where p is the number of given points in Rn.

Full Steiner Topologies (k = p − 2)

The total number of different topologies with k = p − 2 Steiner points is

1 · 3 · 5 · 7 . . . (2p − 5) = (2p − 5)!!.
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Local Optimization

Example of Local Optimization

x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

Finding the best solution...

Minimize ||x3 − x5||+ ||x2 − x5||+ ||x5 − x6||+ ||x1 − x6||+ ||x4 − x6||

subject to x5 and x6 ∈ Rn.
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with p = 6

6 given points.

4 Steiner points.

All possible edges among
Steiner points.

All possible connections between
a given point and a Steiner
point.

All possible edges.

An example of a set of possible
edges.

1

2

3

4

5

6
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MINLP: Formulations for the Euclidean Steiner Problem

Given p points in Rn, we define a especial graph G = (V ,E).

First Formulation

(P) : Minimize
∑

[i,j]∈E

||xi − xj||yij subject to (1)

∑
j∈S

yij = 1, i ∈ P = {1, 2, . . . , p}, (2)

∑
k<j,k∈S

ykj = 1, j ∈ S − {p + 1}, (3)

x i ∈ Rn, i ∈ S , (4)
yij ∈ {0, 1}, [i , j] ∈ E , (5)

where ||x i − x j || =
√∑n

l=1(x
i
l − x j

l )
2 is the Euclidean distance between x i and x j .
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with p = 6∑
k<j,k∈S

ykj = 1, j ∈ S− {p + 1}

y7,8 = 1
y7,9 + y8,9 = 1

y7,10 + y8,10 + y9,10 = 1

7 8

7 8

9

7 8

9

7 8

910

7 8

910

7 8

910

7 8

910

7 8

910

7 8

910
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: another example
If we don’t considerer ∑

k<j,k∈S

ykj = 1, j ∈ S − {p + 1}

1 2

3

4

1 2

3

54

6
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation (another way to write)

(P) : Minimize
∑

[i,j]∈E

(t2ij − u2
ij) subject to (6)

||x i − x j || − (tij + uij ) ≤ 0, [i , j] ∈ E , (7)
yij − (tij − uij ) = 0, [i , j] ∈ E , (8)∑

j∈S
yij = 1, i ∈ P = {1, 2, . . . , p}, (9)

∑
i∈P

yij +
∑

k<j,k∈S
ykj +

∑
k>j,k∈S

yjk = 3, j ∈ S = {p + 1, . . . , 2p − 2}, (10)

∑
k<j,k∈S

ykj = 1, j ∈ S − {p + 1}, (11)

x i ∈ Rn, i ∈ S , (12)
yij ∈ {0, 1}, [i , j] ∈ E . (13)
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation

L(x , y , t, u, α, β) =
∑

[i,j]∈E

(t2ij − u2ij ) +
∑

[i,j]∈E

[||x i − x j || − (tij + uij)]αij +

+
∑

[i,j]∈E

[yij − (tij − uij)]βij

or

L(x , y , t, u, α, β) =
∑

[i,j]∈E

[t2ij − u2ij − (αij + βij)tij − (αij − βij)uij ] +

+
∑

[i,j]∈E

αij ||x i − x j ||+
∑

[i,j]∈E

βijyij ,

where

αij > 0 is the dual variable associated to constraint (7).

βij ∈ R is the dual variable associated to constraint (8).
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

D(α, β) = minimum {L(x , y , t, u, α, β) subject to (15)− (20)} (14)∑
j∈S

yij = 1, i ∈ P, (15)

∑
i∈P

yij +
∑

k<j,k∈S
ykj +

∑
k>j,k∈S

yjk = 3, j ∈ S, (16)

∑
k<j,k∈S

ykj = 1, j ∈ S − {p + 1}, (17)

yij ∈ {0, 1}, [i, j] ∈ E , (18)

0 ≤ tij + uij ≤ M, (19)

x i ∈ Rn
, i ∈ S (20)

where M = maximum {||x i − x j || for 1 6 i 6 j 6 p}.
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where M = maximum {||x i − x j || for 1 6 i 6 j 6 p}.

We define

D1(t, u, α, β) = minimum

 ∑
[i,j]∈E

[t2ij − u2ij − (αij + βij )tij − (αij − βij )uij ] | s.t. (19)

 ,
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

D(α, β) = minimum {L(x , y , t, u, α, β) subject to (15)− (20)} (14)∑
j∈S
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∑
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x i ∈ Rn
, i ∈ S (20)

where M = maximum {||x i − x j || for 1 6 i 6 j 6 p}.

We define

D3(y , β) = minimum

 ∑
[i,j]∈E

βijyij | s.t. (15)− (18)

 ,

Maculan, Costa ENS-Cachan – December, 2015 16 / 25



MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

D(α, β) = minimum {L(x , y , t, u, α, β) subject to (15)− (20)} (14)∑
j∈S

yij = 1, i ∈ P, (15)

∑
i∈P

yij +
∑

k<j,k∈S
ykj +

∑
k>j,k∈S

yjk = 3, j ∈ S, (16)

∑
k<j,k∈S

ykj = 1, j ∈ S − {p + 1}, (17)

yij ∈ {0, 1}, [i, j] ∈ E , (18)

0 ≤ tij + uij ≤ M, (19)

x i ∈ Rn
, i ∈ S (20)

where M = maximum {||x i − x j || for 1 6 i 6 j 6 p}.

Thus we can write
D(α, β) = D1(t, u, α, β) +D2(x , α) +D3(y , β).

Maculan, Costa ENS-Cachan – December, 2015 16 / 25



MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

D(α, β) = minimum {L(x , y , t, u, α, β) subject to (15)− (20)} (14)∑
j∈S

yij = 1, i ∈ P, (15)

∑
i∈P

yij +
∑

k<j,k∈S
ykj +

∑
k>j,k∈S

yjk = 3, j ∈ S, (16)

∑
k<j,k∈S

ykj = 1, j ∈ S − {p + 1}, (17)

yij ∈ {0, 1}, [i, j] ∈ E , (18)

0 ≤ tij + uij ≤ M, (19)

x i ∈ Rn
, i ∈ S (20)

where M = maximum {||x i − x j || for 1 6 i 6 j 6 p}.

The Dual Problem will be
Maximize D(α, β) subject to (21)

α > 0, [i , j] ∈ E , (22)
β ∈ R, [i , j] ∈ E . (23)
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

The Lagrangian Relaxation and The Dual Program were proposed by
N. Maculan, P. Michelon and A. E. Xavier, in

The Euclidean Steiner problem in Rn : A mathematical programming formulation,
Annals of Operations Research, vol. 96, pp. 209-220, 2000.

The Idea

To improve the enumeration scheme presented by Smitha, by the inclusion of lower
bounds which are obtained from the Dual Problem Solution.

aW. D. Smith, How to find Steiner minimal trees in Euclidean d-space, Algorithmica, vol. 7,
pp. 137-177,1992.

Maculan, Costa ENS-Cachan – December, 2015 17 / 25



MINLP: Formulations for the Euclidean Steiner Problem

Second Formulation
(P) : Minimize

∑
[i,j]∈E

dij subject to (24)

dij > ||ai − x j || −M(1− yij ), [i, j] ∈ E1, (25)

dij > ||x i − x j || −M(1− yij ), [i, j] ∈ E2, (26)

dij > 0, [i, j] ∈ E (27)∑
j∈S

yij = 1, i ∈ P, (28)

∑
i<j,i∈S

ykj = 1, j ∈ S − {p + 1}, (29)

∑
i∈P

yij +
∑

k<j,k∈S
ykj +

∑
k>j,k∈S

yjk = 3, j ∈ S, (30)

x i ∈ Rn
, i ∈ S, (31)

yij ∈ {0, 1}, [i, j] ∈ E , (32)

dij ∈ R. (33)

We consider


||x i − x j || ≈

√∑n
l=1(x

i
l − x j

l )
2 + λ2

M = maximum{||ai − aj || for 1 6 i 6 j 6 p},

E1 = {[i, j]|i ∈ P, j ∈ S}, E2 = {[i, j]|i ∈ S, j ∈ S} e E = E1 ∪ E2
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MINLP: Formulations for the Euclidean Steiner Problem

Second Formulation (First Property)

If x̄ j ∈ Rn, j ∈ S and ȳij ∈ {0, 1}, [i , j ] ∈ E is an optimal solution, then

dij = ||ai − x̄ j || > 0 or dij = 0, for all [i , j ] ∈ E1 and

dij = ||x̄ i − x̄ j || > 0 or dij = 0, for all [i , j ] ∈ E2.

Second Formulation (Second Property)

yij ∈ {0, 1}, [i , j ] ∈ E is associated with a full Steiner Topology if, and only if, the
following equations are satisfied:

∑
j∈S

yij = 1, i ∈ P,

∑
k<j,k∈S

ykj = 1, j ∈ S − {p + 1},

∑
i∈P

yij +
∑

k<j,k∈S

ykj +
∑

k>j,k∈S

yjk = 3, j ∈ S ,
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MINLP: Formulations for the Euclidean Steiner Problem

Note that...
When we consider

||x i − x j || ≈

√√√√ n∑
l=1

(x i
l − x j

l )
2 + λ2,

error propagations may happen.
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MINLP: Formulations for the Euclidean Steiner Problem

Note that...
When we consider

||x i − x j || ≈

√√√√ n∑
l=1

(x i
l − x j

l )
2 + λ2,

error propagations may happen.

Example: Regular Hexagon
12

3

4 5

6

6 given points.

Each given point is in a vertex of a
Regular Hexagon.

Each side of the Hexagon is equal to 1.
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MINLP: Formulations for the Euclidean Steiner Problem

Note that...
When we consider

||x i − x j || ≈

√√√√ n∑
l=1

(x i
l − x j

l )
2 + λ2,

error propagations may happen.

Example: Regular Hexagon
12

3

4 5

6

Objective Function: 5

λ2 = 10−8

12

3

4 5

6

10

79

8

Objective Function: 5.196 = 3
√

3

λ2 = 10−6
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Second Formulation: Experiments on Platonic Solids

Second Formulation: One Solution for a Tetrahedron

0.0
0.5

1.0

x

0.0
0.5

1.0

y

0.0

0.5

z

Number of Points (Green): 4

Number of Steiner Points (Red): 2

Objective Function: 2.43911

Execution Time: 3.27 s
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Second Formulation: Experiments on Platonic Solids

Second Formulation: One Solution for an Octahedron
0.0

0.5
1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

z

Number of Points (Green): 6

Number of Steiner Points (Red): 4

Objective Function: 2.86801

Execution Time: 2.22min

Maculan, Costa ENS-Cachan – December, 2015 22 / 25



Second Formulation: Experiments on Platonic Solids

Second Formulation: One Solution for a Cube

0.0

0.2
0.4

0.6

x

0.0
0.2

0.4
0.6

y

0.0

0.2

0.4

0.6

z

Number of Points (Green): 8

Number of Steiner Points (Red): 6

Objective Function: 3.57735

Execution Time: 3 h
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Second Formulation: Experiments on Platonic Solids

Second Formulation: One Solution for an Icosahedron

- 0.5 0.0 0.5

x

- 0.5

0.0

0.5

y

- 0.5

0.0

0.5

z

Number of Points (Green): 12

Number of Steiner Points (Red): 10

Objective Function: 4.90531

Execution Time: 48 h (not finished).

Maculan, Costa ENS-Cachan – December, 2015 24 / 25



Thank you!
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