The Euclidean Steiner Tree Problem in \mathbb{R}^{n} Mathematical Models

N. Maculan ${ }^{\ddagger}$, V. Costa ${ }^{\S}$

Universidade Federal do Rio de Janeiro COPPE - Programa de Engenharia de Sistemas

[^0]COPPE

Summary of talk

(1) Problem Definition
(2) Properties
(3) First Formulation

4 Second Formulation
(5) Second Formulation: Experiments on Platonic Solids

COPPE

Instituto Alberto Luizz Coimbra do

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Triangle: Three given points

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Triangle: Three given points

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Triangle: Three given points

Torricelli (1647) pointed out a solution when the triangle formed by the three given points does not have an angle $\geq 120^{\circ}$.

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Triangle: Three given points

Torricelli (1647) pointed out a solution when the triangle formed by the three given points does not have an angle $\geq 120^{\circ}$.
Heinen (1837) apparently is the first to prove that, for a triangle in which an angle is $\geq 120^{\circ}$, the vertex associated with this angle is the minimizing point.

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Fermat's Challenge as an Optimization Problem

Minimize $\mathcal{D}=\|\overrightarrow{X A}\|+\|\overrightarrow{X B}\|+\|\overrightarrow{X C}\|$

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Fermat's Challenge as an Optimization Problem

Minimize $\mathcal{D}=\|\overrightarrow{X A}\|+\|\overrightarrow{X B}\|+\|\overrightarrow{X C}\|$

The solution is given when

$$
\nabla \mathcal{D}=0
$$

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Fermat's Challenge as an Optimization Problem

$\operatorname{Min} \mathcal{D}=\|\overrightarrow{X A}\|+\|\overrightarrow{X B}\|+\|\overrightarrow{X C}\|$

$$
\begin{aligned}
\|\overrightarrow{X A}\| & =\sqrt{\left(x_{a}-x\right)^{2}+\left(y_{a}-y\right)^{2}} \\
\|\overrightarrow{X B}\| & =\sqrt{\left(x_{b}-x\right)^{2}+\left(y_{b}-y\right)^{2}} \\
\|\overrightarrow{X C}\| & =\sqrt{\left(x_{c}-x\right)^{2}+\left(y_{c}-y\right)^{2}}
\end{aligned}
$$

$$
\nabla \mathcal{D}=\binom{\frac{\partial \mathcal{D}}{\partial x}}{\frac{\partial \mathcal{D}}{\partial y}}=\binom{0}{0}
$$

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Fermat's Challenge as an Optimization Problem

$$
\begin{array}{ll}
\text { Min } \mathcal{D}=\|\overrightarrow{X A}\|+\|\overrightarrow{X B}\|+\|\overrightarrow{X C}\| \\
\frac{\partial \mathcal{D}}{\partial x} & =\frac{x_{a}-x}{\|\overrightarrow{X A}\|}+\frac{x_{b}-x}{\|\overrightarrow{X B}\|}+\frac{x_{c}-x}{\|\overrightarrow{X C}\|}=0 \\
\frac{\partial \mathcal{D}}{\partial y}=\frac{y_{a}-y}{\|\overrightarrow{X A}\|}+\frac{y_{b}-y}{\|\overrightarrow{X B}\|}+\frac{y_{c}-y}{\|\overrightarrow{X C}\|}=0
\end{array}
$$

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Fermat's Challenge as an Optimization Problem

$$
\operatorname{Min} \mathcal{D}=\|\overrightarrow{X A}\|+\|\overrightarrow{X B}\|+\|\overrightarrow{X C}\| \|
$$

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Fermat's Challenge as an Optimization Problem

Three Forces in Equilibrium

$$
\nabla \mathcal{D}=\vec{r}+\vec{s}+\vec{t}=\overrightarrow{0}
$$

The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to the three given points is minimum.

Fermat's Challenge as an Optimization Problem

Problem Definition

Now, consider p given points in \mathbb{R}^{n}.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called Steiner points.

Problem Definition

Now, consider p given points in \mathbb{R}^{n}.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called Steiner points.

This is a very well known problem in combinatorial optimization.

Problem Definition

Now, consider p given points in \mathbb{R}^{n}.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called Steiner points.

This is a very well known problem in combinatorial optimization.
This problem has been shown to be NP-Hard.

Problem Definition

Now, consider p given points in \mathbb{R}^{n}.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called Steiner points.

This is a very well known problem in combinatorial optimization.
This problem has been shown to be NP-Hard.
All distances are considered to be Euclidean.

Problem Definition

Some examples of Steiner points in \mathbb{R}^{2}

Problem Definition

An example in \mathbb{R}^{3} : Icosahedron

Properties

Number of Steiner Points

Given p points $x^{i} \in \mathbb{R}^{n}, i=1,2, \ldots, p$, the maximum number of Steiner points is $p-2$.

Properties

Number of Steiner Points

Given p points $x^{i} \in \mathbb{R}^{n}, i=1,2, \ldots, p$, the maximum number of Steiner points is $p-2$.

Degree of Steiner Points

A nondegenerated Steiner point has degree (valence) equal to 3 .

Properties

Number of Steiner Points

Given p points $x^{i} \in \mathbb{R}^{n}, i=1,2, \ldots, p$, the maximum number of Steiner points is $p-2$.

Degree of Steiner Points

A nondegenerated Steiner point has degree (valence) equal to 3 .

Steiner Points Edges

The edges emanating from a nondegenerated Steiner point lie in a plane and have mutual angle equal to 120°.

Steiner Topology

Steiner Topology

It is a topology that satisfy all the Steiner Tree properties.

Steiner Topology

Steiner Topology

It is a topology that satisfy all the Steiner Tree properties.

Number of Topologies (Gilbert and Pollack)

The total number of different topologies with k Steiner points is

$$
C_{p, k+2} \frac{(p+k-2)!}{k!2^{k}}
$$

where p is the number of given points in \mathbb{R}^{n}.

Steiner Topology

Steiner Topology

It is a topology that satisfy all the Steiner Tree properties.

Number of Topologies (Gilbert and Pollack)

The total number of different topologies with k Steiner points is

$$
C_{p, k+2} \frac{(p+k-2)!}{k!2^{k}}
$$

where p is the number of given points in \mathbb{R}^{n}.

Full Steiner Topologies ($k=p-2$)

The total number of different topologies with $k=p-2$ Steiner points is

$$
1 \cdot 3 \cdot 5 \cdot 7 \ldots(2 p-5)=(2 p-5)!!
$$

Local Optimization

Example of Local Optimization

Finding the best solution．．．
Minimize $\left\|x^{3}-x^{5}\right\|+\left\|x^{2}-x^{5}\right\|+\left\|x^{5}-x^{6}\right\|+\left\|x^{1}-x^{6}\right\|+\left\|x^{4}-x^{6}\right\|$ subject to x^{5} and $x^{6} \in \mathbb{R}^{n}$ ．

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with $p=6$

6 given points.

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with $p=6$

6 given points.
4 Steiner points.
(1)

조

(9)

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with $p=6$

6 given points.
4 Steiner points.

All possible edges among Steiner points.
(1)

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with $p=6$

6 given points.
4 Steiner points.
All possible edges among Steiner points.

All possible connections between a given point and a Steiner point.

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with $p=6$

6 given points.
4 Steiner points.
All possible edges among Steiner points.

All possible connections between a given point and a Steiner point.

All possible edges.

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with $p=6$

6 given points.
4 Steiner points.
All possible edges among Steiner points.

All possible connections between a given point and a Steiner point.

All possible edges.
An example of a set of possible edges.

MINLP: Formulations for the Euclidean Steiner Problem

Given p points in \mathbb{R}^{n}, we define a especial graph $G=(V, E)$.

First Formulation

$$
\begin{align*}
&(\mathbf{P}): \text { Minimize } \sum_{[i, j] \in \mathbf{E}}\left\|x^{\mathbf{i}}-x^{\mathbf{j}}\right\| y_{\mathrm{ij}} \text { subject to } \tag{1}\\
& \sum_{j \in S} y_{i j}=1, \quad i \in P=\{1,2, \ldots, p\}, \tag{2}\\
& \sum_{k<j, k \in S} y_{k j}=1, \quad j \in S-\{p+1\}, \tag{3}\\
& x^{i} \in \mathbb{R}^{n}, \quad i \in S, \tag{4}\\
& y_{i j} \in\{0,1\}, \quad[i, j] \in E, \tag{5}
\end{align*}
$$

where $\left\|x^{i}-x^{j}\right\|=\sqrt{\sum_{l=\mathbf{1}}^{n}\left(x_{l}^{i}-x_{l}^{j}\right)^{\mathbf{2}}}$ is the Euclidean distance between x^{i} and x^{j}.

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with $p=6$

$$
\begin{aligned}
& \sum_{\mathbf{k}<\mathbf{j}, \mathbf{k} \in \mathbf{S}} \mathbf{y}_{\mathbf{k j}}=\mathbf{1}, \mathbf{j} \in \mathbf{S}-\{\mathbf{p}+\mathbf{1}\} \\
& y_{7,8}=1 \\
& y_{7,9}+y_{8,9}=1 \\
& y_{7,10}+y_{8,10}+y_{9,10}=1
\end{aligned}
$$

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: another example

If we don't considerer

$$
\sum_{k<j, k \in S} y_{k j}=1, j \in S-\{p+1\}
$$

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation (another way to write)

$$
\begin{gather*}
(\mathbf{P}): \text { Minimize } \sum_{[i, j] \in \mathbf{E}}\left(\mathbf{t}_{\mathbf{i j}}^{\mathbf{2}}-\mathbf{u}_{\mathbf{i j}}^{\mathbf{2}}\right) \text { subject to } \tag{6}\\
\left\|x^{i}-x^{j}\right\|-\left(t_{i j}+u_{i j}\right) \leq 0, \quad[i, j] \in E, \tag{7}\\
y_{i j}-\left(t_{i j}-u_{i j}\right) \tag{8}\\
=0, \quad[i, j] \in E, \tag{9}\\
\sum_{j \in S} y_{i j}
\end{gather*}=1, \quad i \in P=\{1,2, \ldots, p\}, \quad \begin{aligned}
& \tag{10}\\
& \sum_{i \in P} y_{i j}+\sum_{k<j, k \in S} y_{k j}+\sum_{k>j, k \in S} y_{j k}=3, \quad j \in S=\{p+1, \ldots, 2 p-2\}, \tag{11}\\
& \sum_{k<j, k \in S} y_{k j}=1, \quad j \in S-\{p+1\}, \tag{12}\\
& x^{i} \in \mathbb{R}^{n}, \quad i \in S, \tag{13}\\
& y_{i j} \in\{0,1\}, \quad[i, j] \in E .
\end{aligned}
$$

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation

$$
\begin{aligned}
\mathcal{L}(x, y, t, u, \alpha, \beta) & =\sum_{[i, j] \in E}\left(t_{i j}^{2}-u_{i j}^{2}\right)+\sum_{[i, j] \in E}\left[\left\|x^{i}-x^{j}\right\|-\left(t_{i j}+u_{i j}\right)\right] \alpha_{i j}+ \\
& +\sum_{[i, j] \in E}\left[y_{i j}-\left(t_{i j}-u_{i j}\right)\right] \beta_{i j}
\end{aligned}
$$

or

$$
\begin{aligned}
\mathcal{L}(x, y, t, u, \alpha, \beta) & =\sum_{[i, j] \in E}\left[t_{i j}^{2}-u_{i j}^{2}-\left(\alpha_{i j}+\beta_{i j}\right) t_{i j}-\left(\alpha_{i j}-\beta_{i j}\right) u_{i j}\right]+ \\
& +\sum_{[i, j] \in E} \alpha_{i j}\left\|x^{i}-x^{j}\right\|+\sum_{[i, j] \in E} \beta_{i j} y_{i j}
\end{aligned}
$$

where
$\alpha_{i j} \geqslant 0$ is the dual variable associated to constraint (7).
$\beta_{i j} \in R$ is the dual variable associated to constraint (8).

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

$$
\begin{gather*}
\mathcal{D}(\alpha, \beta)=\text { minimum }\{\mathcal{L}(x, y, t, u, \alpha, \beta) \text { subject to }(\mathbf{1 5})-(\mathbf{2 0})\} \tag{14}\\
\sum_{j \in S} y_{i j}=1, \quad i \in P \tag{15}\\
\sum_{i \in P} y_{i j}+\sum_{k<j, k \in S} y_{k j}+\sum_{k>j, k \in S} y_{j k}=3, j \in S \tag{16}\\
\sum_{k<j, k \in S} y_{k j}=1, j \in S-\{p+1\}, \tag{17}\\
y_{i j} \in\{0,1\}, \quad[i, j] \in E \tag{18}\\
0 \leq t_{i j}+u_{i j} \leq M, \tag{19}\\
x^{i} \in R^{n}, i \in S \tag{20}
\end{gather*}
$$

where $M=$ maximum $\left\{\left\|x^{i}-x^{j}\right\|\right.$ for $\left.1 \leqslant i \leqslant j \leqslant p\right\}$.

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

$$
\begin{gather*}
\mathcal{D}(\alpha, \beta)=\text { minimum }\{\mathcal{L}(x, y, t, u, \alpha, \beta) \text { subject to }(\mathbf{1 5})-(\mathbf{2 0})\} \tag{14}\\
\sum_{j \in S} y_{i j}=1, \quad i \in P \tag{15}\\
\sum_{i \in P} y_{i j}+\sum_{k<j, k \in S} y_{k j}+\sum_{k>j, k \in S} y_{j k}=3, j \in S \tag{16}\\
\sum_{k<j, k \in S} y_{k j}=1, j \in S-\{p+1\}, \tag{17}\\
y_{i j} \in\{0,1\}, \quad[i, j] \in E \tag{18}\\
0 \leq t_{i j}+u_{i j} \leq M, \tag{19}\\
x^{i} \in R^{n}, i \in S \tag{20}
\end{gather*}
$$

where $M=$ maximum $\left\{\left\|x^{i}-x^{j}\right\|\right.$ for $\left.1 \leqslant i \leqslant j \leqslant p\right\}$.

We define

$$
\mathcal{D}_{1}(t, u, \alpha, \beta)=\text { minimum }\left\{\sum_{[i, j] \in E}\left[t_{i j}^{2}-u_{i j}^{2}-\left(\alpha_{i j}+\beta_{i j}\right) t_{i j}-\left(\alpha_{i j}-\beta_{i j}\right) u_{i j}\right] \mid \text { s.t. (19) }\right\},
$$

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

$$
\begin{gather*}
\mathcal{D}(\alpha, \beta)=\text { minimum }\{\mathcal{L}(x, y, t, u, \alpha, \beta) \text { subject to }(\mathbf{1 5})-(\mathbf{2 0})\} \tag{14}\\
\sum_{j \in S} y_{i j}=1, \quad i \in P \tag{15}\\
\sum_{i \in P} y_{i j}+\sum_{k<j, k \in S} y_{k j}+\sum_{k>j, k \in S} y_{j k}=3, j \in S \tag{16}\\
\sum_{k<j, k \in S} y_{k j}=1, j \in S-\{p+1\}, \tag{17}\\
y_{i j} \in\{0,1\}, \quad[i, j] \in E \tag{18}\\
0 \leq t_{i j}+u_{i j} \leq M, \tag{19}\\
x^{i} \in R^{n}, i \in S \tag{20}
\end{gather*}
$$

where $M=$ maximum $\left\{\left\|x^{i}-x^{j}\right\|\right.$ for $\left.1 \leqslant i \leqslant j \leqslant p\right\}$.

We define

$$
\mathcal{D}_{2}(x, \alpha)=\text { minimum }\left\{\sum_{[i, j] \in E} \alpha_{i j}\left\|x^{i}-x^{j}\right\| \mid \text { s.t. (20) }\right\},
$$

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

$$
\begin{gather*}
\mathcal{D}(\alpha, \beta)=\text { minimum }\{\mathcal{L}(x, y, t, u, \alpha, \beta) \text { subject to }(\mathbf{1 5})-(\mathbf{2 0})\} \tag{14}\\
\sum_{j \in S} y_{i j}=1, \quad i \in P \tag{15}\\
\sum_{i \in P} y_{i j}+\sum_{k<j, k \in S} y_{k j}+\sum_{k>j, k \in S} y_{j k}=3, j \in S \tag{16}\\
\sum_{k<j, k \in S} y_{k j}=1, j \in S-\{p+1\}, \tag{17}\\
y_{i j} \in\{0,1\}, \quad[i, j] \in E \tag{18}\\
0 \leq t_{i j}+u_{i j} \leq M, \tag{19}\\
x^{i} \in R^{n}, i \in S \tag{20}
\end{gather*}
$$

where $M=$ maximum $\left\{\left\|x^{i}-x^{j}\right\|\right.$ for $\left.1 \leqslant i \leqslant j \leqslant p\right\}$.

We define

$$
\mathcal{D}_{3}(y, \beta)=\text { minimum }\left\{\sum_{[i, j] \in E} \beta_{i j} y_{i j} \mid \text { s.t. }(15)-(18)\right\},
$$

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

$$
\begin{gather*}
\mathcal{D}(\alpha, \beta)=\text { minimum }\{\mathcal{L}(x, y, t, u, \alpha, \beta) \text { subject to }(\mathbf{1 5})-(\mathbf{2 0})\} \tag{14}\\
\sum_{j \in S} y_{i j}=1, \quad i \in P \tag{15}\\
\sum_{i \in P} y_{i j}+\sum_{k<j, k \in S} y_{k j}+\sum_{k>j, k \in S} y_{j k}=3, j \in S \tag{16}\\
\sum_{k<j, k \in S} y_{k j}=1, j \in S-\{p+1\}, \tag{17}\\
y_{i j} \in\{0,1\}, \quad[i, j] \in E \tag{18}\\
0 \leq t_{i j}+u_{i j} \leq M, \tag{19}\\
x^{i} \in R^{n}, i \in S \tag{20}
\end{gather*}
$$

where $M=$ maximum $\left\{\left\|x^{i}-x^{j}\right\|\right.$ for $\left.1 \leqslant i \leqslant j \leqslant p\right\}$.

Thus we can write

$$
\mathcal{D}(\alpha, \beta)=\mathcal{D}_{1}(t, u, \alpha, \beta)+\mathcal{D}_{2}(x, \alpha)+\mathcal{D}_{3}(y, \beta)
$$

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

$$
\begin{gather*}
\mathcal{D}(\alpha, \beta)=\text { minimum }\{\mathcal{L}(x, y, t, u, \alpha, \beta) \text { subject to }(\mathbf{1 5})-(\mathbf{2 0})\} \tag{14}\\
\sum_{j \in S} y_{i j}=1, \quad i \in P \tag{15}\\
\sum_{i \in P} y_{i j}+\sum_{k<j, k \in S} y_{k j}+\sum_{k>j, k \in S} y_{j k}=3, j \in S \tag{16}\\
\sum_{k<j, k \in S} y_{k j}=1, j \in S-\{p+1\} \tag{17}\\
y_{i j} \in\{0,1\}, \quad[i, j] \in E \tag{18}\\
0 \leq t_{i j}+u_{i j} \leq M, \tag{19}\\
x^{i} \in R^{n}, i \in S \tag{20}
\end{gather*}
$$

where $M=$ maximum $\left\{\left\|x^{i}-x^{j}\right\|\right.$ for $\left.1 \leqslant i \leqslant j \leqslant p\right\}$.

The Dual Problem will be

$$
\begin{gather*}
\text { Maximize } \mathcal{D}(\alpha, \beta) \text { subject to } \tag{21}\\
 \tag{22}\\
\alpha \geqslant 0,[i, j] \in E \tag{23}\\
\beta \in R,[i, j] \in E
\end{gather*}
$$

MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: Lagrangian Relaxation and The Dual Program

The Lagrangian Relaxation and The Dual Program were proposed by N. Maculan, P. Michelon and A. E. Xavier, in

The Euclidean Steiner problem in \mathbb{R}^{n} : A mathematical programming formulation, Annals of Operations Research, vol. 96, pp. 209-220, 2000.

The Idea

To improve the enumeration scheme presented by Smith ${ }^{\text {a }}$, by the inclusion of lower bounds which are obtained from the Dual Problem Solution.

[^1] pp. 137-177,1992.

MINLP: Formulations for the Euclidean Steiner Problem

Second Formulation

$$
\begin{align*}
(\mathbf{P}): \text { Minimize } & \sum_{[i, j] \in \mathbf{E}} \mathbf{d}_{\mathrm{ij}} \text { subject to } \tag{24}\\
d_{i j} & \geqslant\left\|a^{i}-x^{j}\right\|-M\left(1-y_{i j}\right),[i, j] \in E_{\mathbf{1}}, \tag{25}\\
d_{i j} & \geqslant\left\|x^{i}-x^{j}\right\|-M\left(1-y_{i j}\right),[i, j] \in E_{\mathbf{2}}, \tag{26}\\
d_{i j} & \geqslant 0,[i, j] \in E \tag{27}\\
\sum_{j \in S} y_{i j} & =1, \quad i \in P, \tag{28}\\
\sum_{i<j, i \in S} y_{k j} & =1, \quad j \in S-\{p+1\}, \tag{29}\\
\sum_{i \in P} y_{i j}+\sum_{k<j, k \in S} y_{k j}+\sum_{k>j, k \in S} y_{j k} & =3, \quad j \in S, \tag{30}\\
x^{i} & \in \mathbb{R}^{n}, \quad i \in S, \tag{31}\\
y_{i j} & \in\{0,1\}, \quad[i, j] \in E, \tag{32}\\
d_{i j} & \in \mathbb{R} . \tag{33}
\end{align*}
$$

We consider $\left\{\begin{array}{l}\left\|x^{i}-x^{j}\right\| \approx \sqrt{\sum_{l=\mathbf{1}}^{n}\left(x_{l}^{i}-x_{l}^{j}\right)^{\mathbf{2}}+\lambda^{2}} \\ M=\text { maximum }\left\{\left\|a^{i}-a^{j}\right\| \text { for } 1 \leqslant i \leqslant j \leqslant p\right\}, \\ E_{\mathbf{1}}=\{[i, j] \mid i \in P, j \in S\}, E_{\mathbf{2}}=\{[i, j] \mid i \in S, j \in S\} \text { e } E=E_{\mathbf{1}} \cup E_{\mathbf{2}}\end{array}\right.$

MINLP: Formulations for the Euclidean Steiner Problem

Second Formulation (First Property)

If $\bar{x}^{j} \in R^{n}, j \in S$ and $\bar{y}_{i j} \in\{0,1\},[i, j] \in E$ is an optimal solution, then

$$
\begin{aligned}
& d_{i j}=\left\|a^{i}-\bar{x}^{j}\right\| \geqslant 0 \text { or } d_{i j}=0, \text { for all }[i, j] \in E_{1} \text { and } \\
& d_{i j}=\left\|\bar{x}^{i}-\bar{x}^{j}\right\| \geqslant 0 \text { or } d_{i j}=0 \text {, for all }[i, j] \in E_{2} .
\end{aligned}
$$

Second Formulation (Second Property)

$y_{i j} \in\{0,1\},[i, j] \in E$ is associated with a full Steiner Topology if, and only if, the following equations are satisfied:

$$
\begin{aligned}
\sum_{j \in S} y_{i j} & =1, \quad i \in P \\
\sum_{k<j, k \in S} y_{k j} & =1, \quad j \in S-\{p+1\},
\end{aligned}
$$

$$
\sum_{i \in P} y_{i j}+\sum_{k<j, k \in S} y_{k j}+\sum_{k>j, k \in S} y_{j k}=3, j \in S,
$$

MINLP: Formulations for the Euclidean Steiner Problem

Note that...

When we consider

$$
\left\|x^{i}-x^{j}\right\| \approx \sqrt{\sum_{l=1}^{n}\left(x_{l}^{i}-x_{l}^{j}\right)^{2}+\lambda^{2}}
$$

error propagations may happen.

COPPE

MINLP: Formulations for the Euclidean Steiner Problem

Note that...

When we consider

$$
\left\|x^{i}-x^{j}\right\| \approx \sqrt{\sum_{l=1}^{n}\left(x_{l}^{i}-x_{l}^{j}\right)^{2}+\lambda^{2}}
$$

error propagations may happen.

Example: Regular Hexagon

6 given points.
Each given point is in a vertex of a Regular Hexagon.
Each side of the Hexagon is equal to 1 .

MINLP: Formulations for the Euclidean Steiner Problem

Note that...

When we consider

$$
\left\|x^{i}-x^{j}\right\| \approx \sqrt{\sum_{l=1}^{n}\left(x_{l}^{i}-x_{l}^{j}\right)^{2}+\lambda^{2}}
$$

error propagations may happen.

Example: Regular Hexagon

Objective Function: 5

$$
\lambda^{2}=10^{-8}
$$

Objective Function: $5.196=3 \sqrt{3}$ $\lambda^{2}=10^{-6}$

Second Formulation: Experiments on Platonic Solids

Second Formulation: One Solution for a Tetrahedron

Number of Points (Green): 4
Number of Steiner Points (Red): 2
Objective Function: 2.43911
Execution Time: 3.27 s

Second Formulation: Experiments on Platonic Solids

Second Formulation: One Solution for an Octahedron

Number of Points (Green): 6
Number of Steiner Points (Red): 4 Objective Function: 2.86801
Execution Time: 2.22 min

Second Formulation: Experiments on Platonic Solids

Second Formulation: One Solution for a Cube

Number of Points (Green): 8
Number of Steiner Points (Red): 6
Objective Function: 3.57735
Execution Time: 3 h

Second Formulation: Experiments on Platonic Solids

Second Formulation: One Solution for an Icosahedron

Number of Points (Green): 12
Number of Steiner Points (Red): 10
Objective Function: 4.90531
Execution Time: 48 h (not finished).

Thank you!

[^0]: ${ }^{\ddagger}$ maculan@cos.ufrj.br
 ${ }^{\S}$ virscosta@gmail.com

[^1]: ${ }^{a}$ W. D. Smith, How to find Steiner minimal trees in Euclidean d-space, Algorithmica, vol. 7,

