

Topographie 3D des surfaces des pièces fabriquées

Modélisation, Simulation et Validation des Systèmes Complexes

Mercredi 27 septembre 2017

Claire LARTIGUE, LURPA

Laboratoire Universitaire de Recherche en Production Automatisée 61 avenue du Président Wilson 94235 Cachan Cedex - France - www.lurpa.ens-cachan.fr

Qualité géométrique des surfaces fabriquées

Topographies 3D des surfaces usinées

- Caractérisation topographies en relation avec la fonction
 - Projet FARMAN IMPACT Influence of Milling PArameters of Complex shape parts in their surface integrity and their fatigue life Time

Mesure vs simulation

 Projet FARMAN - SIMSURF - Vers une simulation réaliste des états de surface par calculs massivement parallèles sur processeurs graphiques

D Topographie 3D en Fabrication additive

Nouveaux challenges en analyse des topographies

Contexte

- Topographie 3D = Texture de surface
- Intégrité de surface = signature résiduelle laissée par le procédé de fabrication
 - Représentée par un ensemble de composantes géométriques et physiques caractérisant la surface et les sous-couches
- Intégrité de surface a une influence sur la fonction : optique, mécanique, esthétique, étanchéité, etc....

Moteurs (frottement, étanchéité)

Prothèse médicale ou dentaire (frottement, innocuité)

Verres solaires (optiques)

Contexte

Accidents liés à des ruptures en fatigue de pièces « vitales »

6 juillet 1996 : Accident aéronautique à Pensacola, Floride (Etat-unis)

Rupture de fatigue d'un disque fan de moteur Origine accident: Mauvaise intégrité de surface liée à l'usinage

Contexte

Problématique générale

Procédé

• Paramètres Outil, Vitesse avance, Vitesse de coupe, orientation outil, etc

Relation

- Stratégie
- Matériau

Intégrité de surface

- Etat de surface 3D
- Etat mécanique
- Micro-structure
- Physico-chimie

. . . .

Fonction de

Nombre de cycles

Projet FARMAN IMPACT : 2008-2013

Influence of Milling PArameters of Complex shape parts in their surface integrity and their fatigue life Time - LMT/LURPA

Projet IMPACT – Démarche scientifique

N. Guillemot, Prise en compte de l'intégrité de surface pour la prévision de la tenue en fatigue de pièces usinées en fraisage, Thèse ENS Cachan – 12/2010

Projet IMPACT : Caractérisation des topographies 3D

V _c (m/min)	300
f _z (mm/tooth)	0.2
hc (µm)	20
Depth of cut a _p (mm)	0.5
Inclinaison β_f (deg)	-45,, -5,-3, -1, 0, 1, 3, 5,, 45

Grand nombre d'essais avec variation des paramètres opératoires

Topographies 3D très différentes selon les paramètres

Projet IMPACT – Caractérisation des topographies 3D

N. Guillemot, B. Mawussi, C. Lartigue, R. Billardon A first approach to characterize the surface integrity generated by ball-end finishing milling, Int J Adv Manuf Technol, 64(1-4) pp. 269-279, 2013

Projet IMPACT – Caractérisation de la topographie

\U(∕⊋∧

Lien micro-géométrie vs Fatigue

Essais de flexion 4 points

Effet négatif sur la limite en fatigue

Ball-end milling - $f_z = 0.4$ mm, $V_c = 300$ m/min, $h_c = 5 \mu m$

Projet IMPACT – Caractérisation des topographies 3D

Proposition d'un facteur de concentration des contraintes en fatigue

- Rôle : indicateur statistique de la quantité de défauts et de leur nocivité
- Paramètres supposés pertinents :
 - □ Svi * Sq (lié au volume de vide en creux)
 - □ Sku (lié à la « pointicité » des défauts)

 Introduction d'une taille de défaut critique ac Recalage aux valeurs expérimentales pour ac = 1,6 µm

$$\frac{\boldsymbol{\Sigma}_{\text{lisse}}^{\infty}}{\boldsymbol{\Sigma}_{\text{usinée}}^{\infty}} = \boldsymbol{K}_{f} = \boldsymbol{1} + \boldsymbol{S}_{vi} \cdot \boldsymbol{S}_{ku} \cdot \frac{\boldsymbol{S}_{q}}{\boldsymbol{a}_{c}}$$

A. Souto-Lebel, N. Guillemot, R. Blillardon, C. Lartigue, Characterization and influence of defect size distribution induced by ball-end finishing milling on fatigue life, 1st CIRP Conference on Surface Integrity, 6 p., January 30 – February 1, 2012, Bremen, Germany

Topographie 3D des surfaces usinées

- IMPACT : Détermination d'indicateurs pertinents pur caractériser les états de surface mais nombre d'essais important
- Prédire la topographie 3D de surface : Simulation 5 axes

VGDV

Topographie de surface : Mesure vs Simulation

Simulation basée sur la méthode du Z-buffer – approche géométrique

- Pièce = ensemble de lignes verticales (ou normales)
- Outil modélisé par un maillage (forme parfaite)
- Echantillonnage de la trajectoire

ปเจง

- Calcul de la position angulaire de l'arête de coupe
- Prise en compte de la cinématique (limite de la machine)

Bonne estimation des paramètres 3D d'état de surface

Pas transv	ersal (mm)	Pas longitudinal (mm)		Sz (mm)		Sa	(mm)
mesure	simulation	mesure	simulation	mesure	simulation	mesure	simulation
2.76	2.63	0.13	0.13	2.76	5.58	1.27	1.21

S. Lavernhe, Y. Quinsat, C. Lartigue, Model for the prediction of 3D surface topography in 5-axis milling International Journal of Advanced Manufacturing Technology, 51(9), pp. 915-924, 2010

Topographie de surface : Mesure vs Simulation

□ Evolution : prise en compte de la géométrie réelle de l'outil

- Allure générale du profil liée à la géométrie outil (calotte sphère)
- Micro-défauts liés à la géométrie réelle de l'outil (défauts d'outil)
- A une certaine échelle, état de surface stochastique

Résultats satisfaisants

Mais :

- Temps de calcul long
- Faibles zones évaluées

• Limite approche géométrique (interaction outil/matière, phénomène abrasion, aspects mécaniques - multiphysique)

S. Lavernhe, Y. Quinsat, C. Lartigue, C. Brown, Realistic simulation of surface defects in 5-axis milling using the measured geometry of the tool, International Journal of Advanced Manufacturing Technology, 74(1-4), pp. 393-401, 2014

16

Projet FARMAN SIMSURF (1 et 2) : 2012-2014

Vers une simulation réaliste des états de surface par calculs massivement parallèles sur processeurs graphiques – LURPA/LMT

Simulation réaliste des topographies de surfaces usinées par plusieurs opérations successives

- Partition de l'espace en une grille de droites, outil discrétisé, trajectoire échantillonnée
- Géométrie réelle des outils (dents, usure, bris, etc.)
- Ecarts dus au processus d'usinage
 - numériques, géométriques, mécaniques
- Simulation des surfaces fabriquées par des procédés d'abrasion
 - Chaque grain est un outil, maillage des grains
 - Interaction avec la matière
 - Modèle stochastique pour simuler les pertes de particules abrasives, intégrer leur usure

Projet SIMSURF – Utilisation du HPC

Nvidia GPU / CUDA

Nvidia GPU / OptiX Prime engine

SPH simulation /SPHEROS

Prototypage d'un logiciel :

- Calcul massivement parallélisé sur cartes graphiques
- Gestion multi-échelles (zoom calculé en temps réel)

Prototypage d'un logiciel :

- Exploitation d'un moteur de ray tracing
- Simplicité de programmation
- Performances moindres

Exploitation d'un code SPH (*Smooth Particule Hydrodynamics*) en collaboration avec l'EPFL :

- Echelle inférieure pour simuler les états de surface produits par abrasion
- Simuler l'abrasion et l'usure des abrasifs

F.Abecassis, S.Lavernhe, C.Tournier, P-A.Boucard, Performance evaluation of CUDA programming for 5axis machining multi-scale simulation, Computers in Industry, 71, pp. 1-9, 2015

Axe : Qualité géométrique des surfaces fabriquées

Topographies 3D des surfaces usinées

- Caractérisation en relation avec la fonction
 - Projet FARMAN IMPACT Influence of Milling PArameters of Complex shape parts in their surface integrity and their fatigue life Time
- Mesure vs simulation
 - Projet FARMAN SIMSURF Vers une simulation réaliste des états de surface par calculs massivement parallèles sur processeurs graphiques

D Topographie 3D en Fabrication additive

Nouveaux challenges en analyse des topographies

□ Nouveau challenge : Etats de surface en Fabrication Additive

- Réalisation de pièces de géométrie complexe
- □ Exemple : structures lattice
 - Cellule élémentaire répétée périodiquement)
 - Optimisation de la forme (structure) pour obtenir les
 - Propriétés attendues (mécaniques, thermiques, acoustiques)

- Comment caractériser la surface totale : interne et externe?
- Mesure réalisée avec un tomographe Peut-on étudier la surface à l'échelle de la rugosité avec un tomographe?

l∪r⊅∧

Bloc céramique avec face usinée

Tomographe

V(PA

 \square NSI du LMT – taille du voxel = 21 μ m

□ Système optique
 □ Alicona – résolution < µm

$$Z = f(X, y)$$

3000	а:	1			ł
200			1		
2000					
100					
100					1
-					1
				A	_

Nuage de points 3D (maillage; z = f(x,y)

- Sélection d'une image
- Extraction d'une portion
- Histogramme niveaux de gris
- Choix du seuil (ISO50 ou Ostu)
- Détermination maillage par méthode des marching-cube (nuage de points 3D)
- Calcul des paramètres surfaciques

Paramètre	CT seuil 1	CT seuil 2
Sa (µm)	9,46	10,2
Sq (µm)	12,2	13,3
Sz (µm)	87,2	96,6
Ssk	-0,68	-0,71
Sku	3,68	3,82
Spk (µm)	5,03	4,93

Comparaison avec mesures issues du capteur optique

Paramètre	Alicona	CT seuil 1	CT seuil 2
Sa (µm)	8,12	9,46	10,2
Sq (µm)	10,3	12,2	13,3
Sz (µm)	67,4	87,2	96,6
Ssk	-0,59	-0,68	-0,71
Sku	3,44	3,68	3,82
Spk (µm)	7,05	5,03	4,93

- Résolution moins bonne avec CT (taille du voxel)
- Ordre de grandeur très cohérent des paramètres
- Légère influence du choix de la valeur seuil
- Résultat dépend de la nature de la topographie de surface

Peut-on étudier à l'échelle de la rugosité avec un tomographe? Résultats plutôt positifs

Mais travaux à mener :

- Résolution en CT amélioration numérique
- Calcul des paramètres sur la surface complète

□ Comment caractériser la surface totale (incluant la porosité)?

• Et faire le lien avec le procédé (FFF)

3 stratégies de remplissage

ep = 0,25mm taux remplissage = 60%

LU(PA

Mesure au Tomographe

Voxel map

Nuage de points

25

Comment caractériser la surface totale (incluant la porosité)?

• Et faire le lien avec le procédé (Fused Filament Fusion - FFF)

Identification des voxels de peau

Stratégie	SSA (mm ⁻¹)
Zig-zag	13
Nid d'abeille	8,5
Hilbert	4
Hilbert	4

• Lien avec caractéristiques mécaniques (plan d'expérience)

Y. Quinsat, C. Lartigue, C. Brown, L. Hattali, Multi-scale surface characterization in additive manufacturing using CT, International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing, Catane, Septembre 2016

Conclusion

Topographie 3D des pièces usinées

Caractérisation en relation avec la fonction

- Détermination d'indicateurs pertinents (en relation avec la fatigue)
 projet IMPACT
- Mesure vs simulation
 - □ Simulation des topographies réalistes Projet SIMSURF
 - □ Vers la simulation multi-modèles (géométrique et mécanique)

Nouveaux challenges en Fabrication additive

- Caractérisation de la surface interne et externe
 - Expérimentation positive des méthodes de mesure par tomographie
 - □ Proposition d'indicateurs pour décrire la surface réelle
 - □ Lien état de surface caractéristique mécanique

Merci de votre attention

Mercredi 27 septembre 2017

