Introd	

Reachability analysis

Distributed synthesis

ROM and PDEs

Synthèse de contrôle garanti pour des systèmes dynamiques spatio-temporels à commutation

Projets Farman SWITCHDESIGN & SWITCHDESIGN2

10 Ans de l'Institut Farman, ENS Paris-Saclay

<u>Adrien Le Coënt</u>¹, Florian De Vuyst¹, Ludovic Chamoin², Laurent Fribourg³

September 27, 2017

¹CMLA Centre de Mathématiques et de Leurs Applications

²LMT Laboratoire de Mécanique et Technologie

³LSV Laboratoire de Spécification et Vérification

Reachability analysis

Distributed synthesis

ROM and PDEs

Context: control systems

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis 00000 0	ROM and PDEs 000 00000000
Outline				
■ S ■ C	aranteed control of witched systems control of switched tate-space bisection	5	ns	
2 Th	e reachable set co	omputation		
3 Dis	tributed synthesis	s of controllers		
	ntrol of partial dif ction	fferential equation	s with model order	

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	• 00 00000 000	00 00000 00	00000 0	000 00000000
Switched systems				

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	• 00 00000 000	00 00000 00	00000 0	000 00000000
Switched systems				

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

state $x \in \mathbb{R}^n$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	• 00 00000 000	00 00000 00	00000 0	000 00000000
Switched systems				

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

state $x \in \mathbb{R}^n$

bounded perturbation $d \in \mathbb{R}^m$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	• 00 00000 000	00 00000 00	00000 0	000 00000000
Switched systems				

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

state $x \in \mathbb{R}^n$

bounded perturbation $d \in \mathbb{R}^m$

• switching signal $\sigma(\cdot) : \mathbb{R}^+ \longrightarrow U$ (piecewise constant)

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	• 00 00000 000	00 00000 00	00000 0	000 00000000
Switched systems				

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

- state $x \in \mathbb{R}^n$
- **bounded perturbation** $d \in \mathbb{R}^m$
- switching signal $\sigma(\cdot) : \mathbb{R}^+ \longrightarrow U$ (piecewise constant)

• $U = \{1, \dots, N\}$ finite set of modes, associated with the dynamics

 $\dot{x}(t) = f_u(x(t), d(t)), \ u \in U$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	• 00 00000 000	00 00000 00	00000 0	000 00000000
Switched systems				

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

- state $x \in \mathbb{R}^n$
- **bounded perturbation** $d \in \mathbb{R}^m$
- switching signal $\sigma(\cdot) : \mathbb{R}^+ \longrightarrow U$ (piecewise constant)

• $U = \{1, \dots, N\}$ finite set of modes, associated with the dynamics

 $\dot{x}(t) = f_u(x(t), d(t)), \ u \in U$

We focus on sampled switched systems: switching instants occur periodically every τ , i.e. σ is constant on $[i\tau, (i+1)\tau)$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis
	000 00000 000	00 00000 00	00000 0

ROM and PDEs

Switched systems

Examples of switched systems

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	00 ● 00000 000	00 00000 00	00000 0	000 00000000
Switched systems				

Controlled Switched Systems: Schematic View

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		0000000
	000	00		
Control of switched	systems			

We consider the state-dependent control problem of synthesizing σ :

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		0000000
	000	00		
Control of switched	systems			

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		00000000
	000	00		
Control of switched	systems			

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

Given two sets *R*, *S*:

 (R, S)-stability: x(t) returns in R infinitely often, at some multiples of sampling period τ, and always stays in S

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		00000000
	000	00		
Control of switched	systems			

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

Given two sets *R*, *S*:

 (R, S)-stability: x(t) returns in R infinitely often, at some multiples of sampling period τ, and always stays in S

 \underline{NB} : classic stabilization impossible here (no common equilibrium pt) \sim practical stability

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	0000	00000		0000000
	000	00		
Control of switched	systems			

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

- Given three sets R, B, S:
 - (R, B, S)-avoidance: x(t) returns in R infinitely often, at some multiples of sampling period \(\tau\), and always stays in S\B

<u>NB</u>: classic stabilization impossible here (no common equilibrium pt) \sim practical stability

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		0000000
	000	00		
Control of switched	systems			

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

Given three sets R_1 , R_2 , S:

 (R₁, R₂, S)-reachability: x(t) starting in R₁ reaches R₂ after some multiples of sampling period τ, and always stays in S

S

<u>NB</u>: classic stabilization impossible here (no common equilibrium pt) \sim practical stability

A. Le Coënt

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 000	00 00000 00	00000 0	000 00000000	
Control of switched systems					

$$\begin{pmatrix} T_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u}_1 & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} - \alpha_f \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u}_1 \\ \alpha_{e2} T_e + \alpha_f T_f \mathbf{u}_2 \end{pmatrix}.$$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 000	00 00000 00	00000 0	000 00000000	
Control of switched systems					

$$\begin{pmatrix} T_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u}_1 & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} - \alpha_f \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u}_1 \\ \alpha_{e2} T_e + \alpha_f T_f \mathbf{u}_2 \end{pmatrix} .$$

$$\blacksquare \text{ Modes: } \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ ; sampling period } \tau$$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000	00	00000	000	
	00000	00000		0000000	
	000	00			
Control of switched systems					

$$T_1(t+\tau) = f_1(T_1(t), T_2(t), u_1)$$
$$T_2(t+\tau) = f_2(T_1(t), T_2(t), u_2)$$
$$\bullet \text{ Modes: } \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ ; sampling period } \tau$$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 000	00 00000 00	00000 0	000 00000000	
Control of switched systems					

 $\begin{aligned} T_1(t+\tau) &= f_1(T_1(t), T_2(t), u_1) \\ T_2(t+\tau) &= f_2(T_1(t), T_2(t), u_2) \end{aligned}$ $\bullet \text{ Modes: } \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} &= \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ ; sampling period } \tau \end{aligned}$ $\bullet \text{ A pattern } \pi \text{ is a finite sequence of modes, e.g. } \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) \end{aligned}$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000	00	00000	000	
	00000	00000		0000000	
	000	00			
Control of switched systems					

 $T_1(t + \tau) = f_1(T_1(t), T_2(t), u_1)$ $T_2(t + \tau) = f_2(T_1(t), T_2(t), u_2)$

• Modes: $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$; sampling period τ

• A pattern π is a finite sequence of modes, e.g. $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

A state dependent control consists in selecting at each τ a mode (or a pattern) according to the current value of the state.

Introduction	Guaranteed control ○○○ ○○○○● ○○○	Reachability analysis 00 00000 00	Distributed synthesis 00000 0	ROM and PDEs 000 00000000
Control of switched	systems			

(R, S)-stability property for the two-room apartment

Input:

- *R*, *S*
- an integer *K* (maximal length of patterns)

Output: controlled covering of R (each covering set is coupled with a pattern)

Guaranteed properties: (R, S)-stability

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000	00	00000	000	
	00000	00000		0000000	
	000	00			
Control of switched systems					

(R, S)-stability property for the two-room apartment

Input:

- R, S
- an integer *K* (maximal length of patterns)

Output: controlled covering of R (each covering set is coupled with a pattern)

Guaranteed properties: (R, S)-stability \uparrow

■ Recurrence in R: after some (≤ K) steps of time, the temperature returns in R

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000	00	00000	000	
	00000	00000		0000000	
	000	00			
Control of switched systems					

(R, S)-stability property for the two-room apartment

Input:

- R, S
- an integer *K* (maximal length of patterns)

Output: controlled covering of R (each covering set is coupled with a pattern)

Guaranteed properties: (R, S)-stabilit y_2

- Recurrence in R: after some (≤ K) steps of time, the temperature returns in R
- Safety in *S*: *x*(*t*) always stays in *S*.

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 000	00 00000 00	00000 0	000 00000000	
State-space bisection algorithm					

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 •00	00 00000 00	00000 0	000 00000000	
State-space bisection algorithm					

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

Basic idea:

■ Generate a covering of *R*

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 •00	00 00000 00	00000 0	000 00000000	
State-space bisection algorithm					

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

Basic idea:

- Generate a covering of *R*
- Look for patterns (input sequences) mapping the tiles into R while always staying in S

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 •00	00 00000 00	00000 0	000 00000000	
State-space bisection algorithm					

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

Basic idea:

- Generate a covering of R
- Look for patterns (input sequences) mapping the tiles into R while always staying in S

If it fails,

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 •00	00 00000 00	00000 0	000 00000000	
State-space bisection algorithm					

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

Basic idea:

- Generate a covering of *R*
- Look for patterns (input sequences) mapping the tiles into R while always staying in S
- If it fails, generate another covering.

State-space bisection algorithm	Introduction	Guaranteed control ○○○ ○○○○○ ○●○	Reachability analysis 00 00000 00	Distributed synthesis 00000 0	ROM and PDEs 000 00000000
	State-space bisectio	n algorithm			

Limits

- Requires the computation of the reachable set
 - unknown in general
 - can be approximated using numerical schemes and/or strong hypotheses
- High computational complexity (curse of dimensionality):
 - *m* covering sets, patterns of length *K*, *N* switched modes \Rightarrow cost in $O(mN^{K})$
 - using a bisection heuristics of depth D in dimension $n \Rightarrow \text{cost in } O(2^{nD} N^K)$

We propose:

- Handling nonlinear dynamics without strong hypotheses with guaranteed numerical schemes
- Handling higher dimensions using compositionality
- Synthesizing controllers for PDEs using Model Order Reduction

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 00●	00 00000 00	00000 0	000 00000000	
State-space bisection algorithm					

Outline

- **3** Distributed synthesis of controllers
- **4** Control of partial differential equations with model order reduction

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis 00000 0	ROM and PDE 000 00000000
Outline				
				_
		of switched system	ns	
■ S ■ E	e reachable set constants of the set of the	validated simulatio	n	
3 Dis	stributed synthesis	s of controllers		
	ntrol of partial di Iction	fferential equation	s with model order	r

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000	00	00000	000	
	00000	00000		0000000	
	000	00			
State-of-the-art and validated simulation					

Validated simulation

DynIBEX [Chapoutot, Alexandre dit Sandretto, 2016]

Runge-Kutta numerical scheme:

- Computation of a sequence of approximations (t_n, X_n) of the solution X(t; X₀)
- X_i computed with the previous step: X_i = h(t_{i-1}, X_{i-1})

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000	00		000	
	00000	00000		00000000	
State-of-the-art and validated simulation					

Validated simulation

DynIBEX [Chapoutot, Alexandre dit Sandretto, 2016]

Runge-Kutta numerical scheme:

- Computation of a sequence of approximations (t_n, X_n) of the solution X(t; X₀)
- X_i computed with the previous step: X_i = h(t_{i-1}, X_{i-1})

Making it guaranteed:

 Enclose solutions (using Picard-Linedelöf operator and Banach's theorem) on [t_{n-1}, t_n]

Introduction	Guaranteed control	Reachability analysis ●O ○○○○○	Distributed synthesis 00000 0	ROM and PDEs	
State-of-the-art and validated simulation					

Validated simulation

DynIBEX [Chapoutot, Alexandre dit Sandretto, 2016]

Runge-Kutta numerical scheme:

- Computation of a sequence of approximations (t_n, X_n) of the solution X(t; X₀)
- X_i computed with the previous step: X_i = h(t_{i-1}, X_{i-1})

Making it guaranteed:

- Enclose solutions (using Picard-Linedelöf operator and Banach's theorem) on [t_{n-1}, t_n]
- Tighten the error $||x_n x(t_n; x_{n-1})||$

Introd	

Guaranteed control

Reachability analysis ○● ○○○○○ Distributed synthesis

ROM and PDEs

State-of-the-art and validated simulation

Illustration: a path planning problem [Aström, Murray, 2010]

$$\dot{x} = v_0 \frac{\cos(\alpha + \theta)}{\cos(\alpha)} \\ \dot{y} = v_0 \frac{\sin(\alpha + \theta)}{\cos(\alpha)} \\ \dot{\theta} = \frac{v_0}{b} \tan(\delta)$$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		0000000
Euler approximate s	olutions			

Renewing the Euler scheme with the OSL property

(H0) (Lipschitz): for all $j \in U$, there exists a constant $L_i > 0$ such that:

 $\|f_j(y)-f_j(x)\|\leq L_j\|y-x\|\quad \forall x,y\in S.$

(*H*1) (One-sided Lipschitz/Strong monotony): for all $j \in U$, there exists a constant $\lambda_i \in \mathbb{R}$ such that

$$\langle f_j(y) - f_j(x), y - x \rangle \leq \lambda_j \|y - x\|^2 \quad \forall x, y \in \mathcal{T},$$

Let us define the constants: C_i for all $j \in U$:

$$C_j = \sup_{x \in S} L_j \|f_j(x)\|$$
 for all $j \in U$.

NB: constants computed by constrained optimization.

A. Le Coënt

Introduction	Guaranteed control	Reachability analysis ○○ ○●○○○ ○○	Distributed synthesis 00000 0	ROM and PDEs 000 00000000
Euler approximate so	olutions			

Main result

Theorem

Given a sampled switched system satisfying (H0-H1), consider a point \tilde{x}^0 and a positive real δ . We have, for all $x^0 \in B(\tilde{x}^0, \delta)$, $t \in [0, \tau]$ and $j \in U$: $\phi_j(t; x^0) \in B(\tilde{\phi}_j(t; \tilde{x}^0), \delta_j(t))$. with

if
$$\lambda_j < 0: \ \delta_j(t) = \left(\delta^2 e^{\lambda_j t} + \frac{C_j^2}{\lambda_j^2} \left(t^2 + \frac{2t}{\lambda_j} + \frac{2}{\lambda_j^2} \left(1 - e^{\lambda_j t}\right)\right)\right)^{\frac{1}{2}}$$

 if $\lambda_j = 0: \ \delta_j(t) = \left(\delta^2 e^t + C_j^2 \left(-t^2 - 2t + 2(e^t - 1))\right)^{\frac{1}{2}}$

 if $\lambda_j > 0: \ \delta_j(t) = \left(\delta^2 e^{3\lambda_j t} + \frac{C_j^2}{3\lambda_j^2} \left(-t^2 - \frac{2t}{3\lambda_j} + \frac{2}{9\lambda_j^2} \left(e^{3\lambda_j t} - 1\right)\right)\right)^{\frac{1}{2}}$

Introduction	Guaranteed control	Reachability analysis ○○ ○○●○○ ○○	Distributed synthesis 00000 0	ROM and PDEs
Euler approximate s	olutions			

Application to guaranteed integration

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
		00000		
	000	00		
Euler approximate s	olutions			

Control synthesis

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000 00000 000	00 0000● 00	00000	000 0000000
Euler approximate s				

Validated simulation vs Euler

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000 00000 000	00 00000 ● 0	00000 0	000 00000000
Case studies				

Building ventilation

[Meyer, Nazarpour, Girard, Witrant, 2014]

Dynamics of a four-room apartment:

$$\frac{dT_i}{dt} = \sum_{j \in \mathcal{N}^*} a_{ij}(T_j - T_i) + \delta_{s_i} b_i(T_{s_i}^4 - T_i^4) + c_i \max\left(0, \frac{V_i - V_i^*}{\overline{V}_i - V_i^*}\right) (T_u - T_i).$$

 $\begin{aligned} \mathcal{N}^* &= \{1,2,3,4,u,o,c\} \\ \text{Control inputs: } V_1 \text{ and } V_4 \text{ can take the values 0V or } 3.5\text{V} \text{, and } V_2 \text{ and} \\ V_3 \text{ can take the values 0V or } 3\text{V} \\ &\Rightarrow 16 \text{ switching modes} \end{aligned}$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000 00000 000	00 00000 00	00000 0	000 00000000
Case studies				

Building ventilation

	Euler	DynIBEX	
R	[20, 2	22] ⁴	
S	[19, 2	23] ⁴	
τ	30		
Complete control	Yes	Yes	
$\max_{j=1,\ldots,16}\lambda_j$	$-6.30 imes 10^{-3}$		
$\max_{j=1,\dots,16} C_j$	$4.18 imes10^{-6}$		
Number of balls/tiles	4096	252	
Pattern length	1	1	
CPU time	63 seconds	249 seconds	

Introduction	Guaranteed control	Reachability analysis ○○ ○○○○○ ○●	Distributed synthesis 00000 0	ROM and PDEs 000 00000000
Case studies				

Building ventilation

Introduction	Guaranteed control	Reachability analysis 00 00000 00	Distributed synthesis 00000 0	ROM and PDEs 000 00000000
Outline	2			
	Guaranteed control The reachable set c		ns	
3	Distributed synthesi Distributed synthesi Distributed synthesi	s of controllers s using zonotopes	nod	

4 Control of partial differential equations with model order reduction

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 000	00 00000 00	00000 0	000 00000000	
Distributed synthesis using zonotopes					

$$\begin{split} x_1(t+1) &= f_1(x_1(t), x_2(t), u_1) \\ x_2(t+1) &= f_2(x_1(t), x_2(t), u_2) \end{split}$$

Target zone: $R = R_1 \times R_2$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
			00000	
	00000	00000		00000000
	000	00		
Distributed synthesis	s using zonotopes			

 $\begin{aligned} x_1(t+1) &= f_1(x_1(t), x_2(t), u_1) \\ x_2(t+1) &= f_2(x_1(t), x_2(t), u_2) \\ \text{Target zone: } R &= R_1 \times R_2 \end{aligned}$

$$X \subset R + a$$

$$X^{+} = f(X, \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}) \subset R + a + \varepsilon$$

$$X^{++} = f(X^{+}, \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}) \subset R$$

$$Pattern \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}, \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} depends on X$$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000	00	_0000	000	
	00000 000	00000 00		00000000	
Distributed synthesis using zonotopes					

 $\begin{aligned} x_1(t+1) &= f_1(x_1(t), x_2(t), u_1) \\ x_2(t+1) &= f_2(x_1(t), x_2(t), u_2) \end{aligned}$

Target zone: $R = R_1 \times R_2$

 $X_1 \subset R_1 + a$ $X_1^+ = f_1(X_1, R_2 + a, u_1) \subset R_1 + a + \varepsilon$ $X_1^{++} = f_1(X_1^+, R_2 + a + \varepsilon, v_1) \subset R_1$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 000	00 00000 00	0000 0	000 00000000	
Distributed synthesis using zonotopes					

 $\begin{aligned} x_1(t+1) &= f_1(x_1(t), x_2(t), u_1) \\ x_2(t+1) &= f_2(x_1(t), x_2(t), u_2) \end{aligned}$

Target zone: $R = R_1 \times R_2$

■
$$X_2 \subset R_2 + a$$

■ $X_2^+ = f_2(R_1 + a, X_2, u_2) \in R_2 + a + \varepsilon$
■ $X_2^{++} = f_2(R_1 + a + \varepsilon, X_2^+, v_2) \in R_2$

Pattern
$$u_2 \cdot v_2$$
 depends only on X_2

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000	00	00000	000	
	00000	00000		0000000	
	000	00			
Distributed synthesis using zonotopes					

Seluxit case study

Kim G. Larsen, Marius Mikučionis, Marco Muniz, Jiri Srba, Jakob H. Taankvist. Online and Compositional Learning of Controllers with Application to Floor Heating. Tools and Algorithms for Construction and Analysis of Systems 2016.

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		0000000
	000	00		
Distributed synthesi	s using zonotopes			

Seluxit case study

Kim G. Larsen, Marius Mikučionis, Marco Muniz, Jiri Srba, Jakob H. Taankvist. Online and Compositional Learning of Controllers with Application to Floor Heating. Tools and Algorithms for Construction and Analysis of Systems 2016.

System dynamics:

$$\frac{d}{dt}T_{i}(t) = \sum_{j=1}^{n} A_{i,j}^{d}(T_{j}(t) - T_{i}(t)) + B_{i}(T_{env}(t) - T_{i}(t)) + H_{i,j}.v_{j}$$

- System of dimension 11
- 2^{11} combinations of v_j (not all admissible, constraint on the number of open valves)
- Pipes heating a room may influence other rooms
- Doors opening and closing (here: average between open and closed)
- Varying external temperature (here: $T_{env} = 10^{\circ} C$)
- Measures and switching every 15 minutes

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PD
	000 00000 000	00 00000 00	0000 0	000 00000000
Distributed synthesis	s using zonotopes			

Seluxit case study, guaranteed reachability and stability

Decomposition in 5 + 6 rooms (cf. [Larsen et al., TACAS 2016], thanks to the Aalborg team for the simulator)

Simulation of the Seluxit case study plotted with time (in min) for $T_{env} = 10^{\circ} C$.

DEs

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	00000	00000	•	0000000	
	000	00			
Distributed synthesis using Euler's method					

Perturbed Euler scheme

Additional hypothesis on the dynamics: (H_W): (Robustly OSL) $\exists \lambda_i \in \mathbb{R}$ and $\gamma_i \in \mathbb{R}_{>0}$ s.t.

Introduction	Guaranteed control	Reachability analysis 00 00000 00	Distributed synthesis ○○○○○ ●	ROM and PDEs	
Distributed synthesis using Euler's method					

Perturbed Euler scheme

Additional hypothesis on the dynamics: (H_W): (Robustly OSL) $\exists \lambda_j \in \mathbb{R}$ and $\gamma_j \in \mathbb{R}_{\geq 0}$ s.t.

 $\begin{aligned} \forall x, x' \in \mathcal{T}, \ \forall w, w' \in \mathcal{W} \\ \langle f_j(x, w) - f_j(x', w'), x - x' \rangle &\leq \lambda_j \|x - x'\|^2 + \gamma_j \|x - x'\| \|w - w'\|. \end{aligned}$

NB: λ_j and γ_j can be computed with constrained optimization algorithms. NB2: This notion is close to incremental input-to-state stability [Angeli].

		000 00000 000	Reachability analysis 00 00000 00	00000 0	ROM and PDEs
Out	line				
	1 Guara	anteed control	of switched systen	าร	
	2 The	reachable set c	omputation		
	3 Distr	ibuted synthesi	s of controllers		
	reduct ∎ Mo	ion del Order Reduc	fferential equations tion for high dimens ifferential Equations		

Introduction	Guaranteed control	Reachability analysis 00 00000 00	Distributed synthesis 00000 0	ROM and PDEs ●OO ○○○○○○○○		
Model Order Reduction for high dimensional ODES						

Described by the differential equation:

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
				000	
	00000	00000		00000000	
	000	00			
Model Order Reduction for high dimensional ODES					

Described by the differential equation:

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$: output
- $u \in \mathbb{R}^{p}$: control input, takes a finite number of values (modes)
- A,B,C: matrices of appropriate dimensions

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs	
	000 00000 000	00 00000 00	00000 0	• 00 00000000	
Model Order Reduction for high dimensional ODES					

Described by the differential equation:

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$: output
- $u \in \mathbb{R}^p$: control input, takes a finite number of values (modes)
- *A*,*B*,*C*: matrices of appropriate dimensions

Idea: impose the right u(t) such that x and y verify some properties (stability, reachability...)

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000 00000 000	00 00000 00	00000	• 00 00000000
Model Order Reduc	tion for high dimensional ODES			

Described by the differential equation:

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$: output
- $u \in \mathbb{R}^{p}$: control input, takes a finite number of values (modes)
- A,B,C: matrices of appropriate dimensions
- Idea: impose the right u(t) such that x and y verify some properties (stability, reachability...)

Objectives:

- x-stabilization: make all the state trajectories starting in a compact interest set R_x ⊂ ℝⁿ return to R_x;
- 2 *y-convergence*: send the output of all the trajectories starting in R_x into an objective set $R_y \subset \mathbb{R}^m$;

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		0000000
	000	00		
Model Order Reduc	tion for high dimensional ODES			

Described by the differential equation:

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$: output
- $u \in \mathbb{R}^{p}$: control input, takes a finite number of values (modes)
- A,B,C: matrices of appropriate dimensions
- Idea: impose the right u(t) such that x and y verify some properties (stability, reachability...)

Objectives:

- x-stabilization: make all the state trajectories starting in a compact interest set R_x ⊂ ℝⁿ return to R_x;
- 2 *y-convergence*: send the output of all the trajectories starting in R_x into an objective set $R_y \subset \mathbb{R}^m$;
- Constraint: x of "high" dimension.

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000 00000 000	00 00000 00	00000 0	000 00000000
Model Order Reduc	tion for high dimensional ODES			

Dealing with high dimensionality : model reduction

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000 00000 000	00 00000 00	00000 0	000 00000000
Model Order Reduc	tion for high dimensional ODES			

Dealing with high dimensionality : model reduction

Application

Vibration (online) control of a cantilever beam: n = 120 and $n_r = 4$

Introduction	Guaranteed control	Reachability analysis 00 00000 00	Distributed synthesis 00000 0	ROM and PDEs ○○● ○○○○○○○
Model Order Reduc	tion for high dimensional ODES			

Application

Vibration (online) control of a cantilever beam: n = 120 and $n_r = 4$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	00000	00000		0000000
	000	00		
Control of Partial Di	ifferential Equations			

Case of PDE problems

Difficulty:

- The problem becomes infinite-dimensional;
- Even spatially discretized, the *curse of dimensionality* makes the former approaches (bisection, ball overlapping, ...) irrelevant.

 \implies requires model order reduction (MOR)

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000 00000 000	00 00000 00	00000 0	000 0●000000
Control of Partial D	ifferential Equations			

Pb of study: (ODE + 1D heat eq) with boundary control

$$\frac{d\xi}{dt} = A_{\sigma}\xi + \mathbf{b}_{\sigma}, \quad t > 0,$$

$$\frac{\partial u}{\partial t} - \nabla \cdot (\kappa(.)\nabla u) = f \quad \text{in } \Omega \times (0, +\infty),$$

$$u(0, t) = \xi_{1}(t), \quad u(L, t) = \xi_{2}(t), \quad \text{for all } t > 0,$$

$$u(., t = 0) = u^{0}$$

$$a_{1}(t) + \underbrace{v(x, t)}_{0} + \underbrace{a_{2}(t)}_{1} + \underbrace{a_{2}(t)}_{$$

Use of 4 constant control modes:

$$\mathbf{b}_1 = (1,1)^T, \ \mathbf{b}_2 = (-1,-1)^T, \ \mathbf{b}_3 = (-1,1)^T, \ \mathbf{b}_4 = (1,-1)^T.$$

Control objective:

$$\boldsymbol{\xi}(t)\in R \quad \text{and} \quad \|\boldsymbol{u}(.,t)-\boldsymbol{u}^\infty\|_{L^2(0,1)}\leq \rho \quad \text{ for all } t>0.$$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		0000000
	000	00		
Control of Partial D	fferential Equations			

Transformation of the problem

Denoting by $u_q = u_q(., t)$ the solution of the quasi-static problem at each time *t*:

$$-\nabla \cdot (\kappa(.)\nabla u_q) = f + \nabla \cdot (\kappa(.)\nabla u^{\infty}) \text{ in } \Omega,$$
$$u_q(0,t) = \xi_1(t) - \xi_1^{\infty},$$
$$u_q(L,t) = \xi_2(t) - \xi_2^{\infty},$$

one can express the solution u as the sum of u^{∞} , u_q and a function ψ , i.e.

$$u(.,t) = u^{\infty}(.) + u_q(.,t) + \psi(.,t)$$

where $\psi(.,t)$ is solution of the heat problem with homogeneous Dirichlet boundary conditions

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000	00	00000	000
	00000	00000		0000000
	000	00		
Control of Partial Di	fferential Equations			

Reduced order problem

Look for a low dimensional approximation $\tilde{\psi}$ of $\psi :$

$$ilde{\psi}(x,t) = \sum_{k=1}^{K} ilde{eta}_k(t) arphi^k(x)$$

with a reduced basis $\{\varphi^k\}_{k=1,\dots,K}$ assumed to be orthonormal in $L^2(\Omega).$ Then

$$\|\widetilde{\psi}(.,t)\|_{L^2(\Omega)}=\|\widetilde{oldsymbol{eta}}(t)\|_{2,\mathbb{R}^K}.$$

By the triangular inequality we can write

$$egin{aligned} \|\psi(.,t)\|_{L^2(\Omega)} &\leq & \|\psi(.,t)- ilde{\psi}(.,t)\|_{L^2(\Omega)}+\| ilde{\psi}(.,t)\|_{L^2(\Omega)}\ &\leq & \|\psi(.,t)- ilde{\psi}(.,t)\|_{L^2(\Omega)}+\| ilde{eta}(t)\|_2. \end{aligned}$$

Introduction	Guaranteed control 000 00000 0000	Reachability analysis 00 00000 00	Distributed synthesis 00000 0	ROM and PDEs ○○○ ○○○○●○○○
Control of Partial Di	ifferential Equations			

Reduced order problem

Additional assumption (can be ensured by a proper construction of the reduced basis):

 $\|\psi(.,t) - \tilde{\psi}(.,t)\|_{L^{2}(\Omega)} \leq \mu \, \|\psi^{0} - \tilde{\psi}^{0}\|_{L^{2}(\Omega)} \quad \forall t \in [0,\tau]$

Then:

$$\begin{split} C\|f + \nabla \cdot (\kappa(.)\nabla u^{\infty})\|_{L^2(\Omega)} + L\|\boldsymbol{\xi}(t) - \boldsymbol{\xi}^{\infty}\|_{\infty} + \\ \|\tilde{\beta}(t)\|_2 + \mu \|\psi^0 - \tilde{\psi}^0\|_{L^2(\Omega)} \leq \rho. \end{split}$$

And finally:

Global stability requirement

$$C \|f + \nabla \cdot (\kappa(.)\nabla u^{\infty})\|_{L^{2}(\Omega)} + L \|\boldsymbol{\xi}(t) - \boldsymbol{\xi}^{\infty}\|_{\infty} + \|\tilde{\boldsymbol{\beta}}(t)\|_{2} + \mu \|\psi^{0} - \pi^{K}\psi^{0}\|_{L^{2}(\Omega)} + \mu \|\boldsymbol{\beta}^{0} - \tilde{\boldsymbol{\beta}}^{0}\|_{2} \leq \rho.$$

Introduction	Guaranteed control	Reachability analysis	Distributed synthesis	ROM and PDEs
	000 00000 000	00 00000 00	00000 0	000 00000000
Control of Partial D	ifferential Equations			

Numerical experiments

$$\begin{split} \frac{d\mathbf{a}}{dt} &= \mathbf{b}_{\sigma}, \quad \mathbf{b}_{\sigma} \in \mathbb{R}^2, \ t > 0, \\ \alpha \, \partial_t v - \partial_{xx}^2 v &= 0 \quad \text{in } (0,1) \times (0,+\infty), \\ v(0,t) &= \mathbf{a}_1(t), \quad v(1,t) = \mathbf{a}_2(t), \quad t > 0, \\ v(.,0) &= v_0 \end{split}$$

• K = 4 (reduced-order space of dimension 2+4=6)

- max switching sequence length = 8
- Offline step: Overlapping of the stability domain by 4⁶ = 4096 balls, computed in less than 20 mins on a laptop
- Guaranteed control verified

ntroc	

Reachability analysis

Distributed synthesis

ROM and PDEs

Control of Partial Differential Equations

Numerical experiments (2)

Figure : Controlled discrete solution $t \mapsto v(., t)$.

Introduction	Guaranteed control	Reachability analysis 00 00000 00	Distributed synthesis 00000 0	ROM and PDEs ○○○ ○○○○○○○●
Control of Partial Di	ifferential Equations			

Conclusions and perspectives

Conclusions:

- Guaranteed control of nonlinear switched systems using guaranteed RK4/Euler
- Renewal of the Euler scheme using OSL property
- Compositional synthesis allowing to handle higher dimensions
- Control of PDEs made possible with Model Order Reduction and proper transformation of the problem

Introduction	Guaranteed control	Reachability analysis 00 00000 00	Distributed synthesis 00000 0	ROM and PDEs ○○○ ○○○○○○○●
Control of Partial D	ifferential Equations			

Conclusions and perspectives

Conclusions:

- Guaranteed control of nonlinear switched systems using guaranteed RK4/Euler
- Renewal of the Euler scheme using OSL property
- Compositional synthesis allowing to handle higher dimensions
- Control of PDEs made possible with Model Order Reduction and proper transformation of the problem

Perspectives:

- Stochastic systems using Euler
- Would the OSL property be relevant on other numerical schemes?
- Testing on real PDE case studies
- Coupling of domain decomposition methods and compositional synthesis