

Synthèse de contrôle garanti pour des systèmes dynamiques spatio-temporels à commutation

Projets Farman SWITCHDESIGN & SWITCHDESIGN2

10 Ans de l'Institut Farman. **ENS Paris-Saclav**

Adrien Le Coënt¹, Florian De Vuyst¹, Ludovic Chamoin², Laurent Fribourg³

September 27, 2017

¹CMLA Centre de Mathématiques et de Leurs Applications ²LMT Laboratoire de Mécanique et Technologie

³LSV Laboratoire de Spécification et Vérification

Inte

id PDEs

2000

Context: control systems

Outline

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

state $x \in \mathbb{R}^n$

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

state $x \in \mathbb{R}^n$

bounded perturbation $d \in \mathbb{R}^m$

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

state $x \in \mathbb{R}^n$

bounded perturbation $d \in \mathbb{R}^m$

switching signal $\sigma(\cdot): \mathbb{R}^+ \longrightarrow U$ (piecewise constant)

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

state $x \in \mathbb{R}^n$

- bounded perturbation $d \in \mathbb{R}^m$
- switching signal $\sigma(\cdot): \mathbb{R}^+ \longrightarrow U$ (piecewise constant)

 $U = \{1, \ldots, N\}$ finite set of modes, associated with the dynamics

 $\dot{x}(t) = f_u(x(t), d(t)), u \in U$

A continuous-time switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

state $x \in \mathbb{R}^n$

- bounded perturbation $d \in \mathbb{R}^m$
- switching signal $\sigma(\cdot): \mathbb{R}^+ \longrightarrow U$ (piecewise constant)

 $U = \{1, \ldots, N\}$ finite set of modes, associated with the dynamics

 $\dot{x}(t) = f_u(x(t), d(t)), u \in U$

We focus on sampled switched systems: switching instants occur periodically every τ , i.e. σ is constant on $[i\tau, (i+1)\tau]$

Examples of switched systems

Controlled Switched Systems: Schematic View

We consider the state-dependent control problem of synthesizing σ :

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x , in order to achieve some objectives:

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x , in order to achieve some objectives:

Given two sets R , S :

 (R, S) -stability: $x(t)$ returns in R infinitely often, at some multiples of sampling period τ , and always stays in S

S

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x , in order to achieve some objectives:

Given two sets R , S :

 (R, S) -stability: $x(t)$ returns in R infinitely often, at some multiples of sampling period τ , and always stays in S

NB: classic stabilization impossible here (no common equilibrium pt) \rightsquigarrow practical stability

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x , in order to achieve some objectives:

Given three sets R , B , S :

 (R, B, S) -avoidance: $x(t)$ returns in R infinitely often, at some multiples of sampling period τ , and always stays in $S \setminus B$

NB: classic stabilization impossible here (no common equilibrium pt) \rightsquigarrow practical stability

We consider the state-dependent control problem of synthesizing σ :

At each sampling time $k\tau$, find the appropriate switched mode $u \in U$ according to the current value of x , in order to achieve some objectives:

Given three sets R_1 , R_2 , S:

 (R_1, R_2, S) -reachability: $x(t)$ starting in R_1 reaches R_2 after some multiples of sampling period τ , and always stays in S

S

NB: classic stabilization impossible here (no common equilibrium pt) \rightsquigarrow practical stability

$$
\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_{f} u_1 & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} - \alpha_{f} u_2 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_{f} T_f u_1 \\ \alpha_{e2} T_e + \alpha_{f} T_f u_2 \end{pmatrix}.
$$

$$
\begin{pmatrix}\n\dot{T}_1 \\
T_2\n\end{pmatrix} = \begin{pmatrix}\n-\alpha_{21} - \alpha_{\ell 1} - \alpha_{\ell} u_1 & \alpha_{21} \\
\alpha_{12} & -\alpha_{12} - \alpha_{\ell 2} - \alpha_{\ell} u_2\n\end{pmatrix} \begin{pmatrix}\nT_1 \\
T_2\n\end{pmatrix} + \begin{pmatrix}\n\alpha_{e1} T_e + \alpha_{f} T_f u_1 \\
\alpha_{e2} T_e + \alpha_{f} T_f u_2\n\end{pmatrix}.
$$
\n\nModels:

\n
$$
\begin{pmatrix}\nu_1 \\
u_2\n\end{pmatrix} = \begin{pmatrix}\n0 \\
0\n\end{pmatrix}, \begin{pmatrix}\n0 \\
1\n\end{pmatrix}, \begin{pmatrix}\n1 \\
0\n\end{pmatrix}, \begin{pmatrix}\n1 \\
1\n\end{pmatrix}
$$
\nsampling period

$$
T_1(t + \tau) = f_1(T_1(t), T_2(t), u_1)
$$

$$
T_2(t + \tau) = f_2(T_1(t), T_2(t), u_2)
$$

•
$$
\text{Models: } \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \text{ sampling period } \tau
$$

 $T_1(t + \tau) = f_1(T_1(t), T_2(t), u_1)$ $T_2(t + \tau) = f_2(T_1(t), T_2(t), u_2)$ Modes: $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ $u₂$ $\Big) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 0 $\bigg)$, $\bigg(\begin{matrix} 0 \\ 1 \end{matrix} \bigg)$ 1 $\Big)$, $\Big(\frac{1}{2}$ 0 $\Big)$, $\Big(\frac{1}{1}$ 1 $\big)$; sampling period τ A pattern π is a finite sequence of modes, e.g. $\Big(\Big(\begin{matrix} 0\ 1\end{matrix}\Big)$ $\bigg) \cdot \bigg(\begin{matrix} 0 \\ 0 \end{matrix} \bigg)$ 0 $\bigg) \cdot \bigg(\frac{1}{1}$ 1 \setminus

 $T_1(t + \tau) = f_1(T_1(t), T_2(t), u_1)$ $T_2(t + \tau) = f_2(T_1(t), T_2(t), \mu_2)$

Modes: $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ $u₂$ $\Big) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 0 $\bigg)$, $\bigg(\begin{matrix} 0 \\ 1 \end{matrix} \bigg)$ 1 $\Big)$, $\Big(\frac{1}{2}$ 0 $\Big)$, $\Big(\frac{1}{1}$ 1 $\big)$; sampling period τ

A pattern π is a finite sequence of modes, e.g. $\Big(\Big(\begin{matrix} 0\ 1\end{matrix}\Big)$

A state dependent control consists in selecting at each τ a mode (or a pattern) according to the current value of the state.

 $\bigg) \cdot \bigg(\begin{matrix} 0 \\ 0 \end{matrix} \bigg)$ 0 $\bigg) \cdot \bigg(\frac{1}{1}$ 1 \setminus

(R, S) -stability property for the two-room apartment

Input:

 R, S

a an integer K (maximal length of patterns)

Output: controlled covering of R (each covering set is coupled with a pattern)

Guaranteed properties: (R, S) -stability

(R, S) -stability property for the two-room apartment

Input:

 R, S

a an integer K (maximal length of patterns)

Output: controlled covering of R (each covering set is coupled with a pattern)

Guaranteed properties: (R, S) -stability, \uparrow

Recurrence in R : after some $({\leq K})$ steps of time, the temperature returns in R

(R, S) -stability property for the two-room apartment

Input:

 R, S

a an integer K (maximal length of patterns)

Output: controlled covering of R (each covering set is coupled with a pattern)

Guaranteed properties: (R, S) -stability, \dagger

- Recurrence in R : after some $({\leq K})$ steps of time, the temperature returns in R
- Safety in S: $x(t)$ always stays in S.

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

Basic idea:

- Generate a covering of R
- Look for patterns (input sequences) mapping the tiles into R while always staying in S

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

Basic idea:

- Generate a covering of R
- Look for patterns (input sequences) mapping the tiles into R while always staying in S
- \blacksquare If it fails,

 $\dot{x}(t) = f_{\sigma(t)}(x(t), d(t))$

Goal: from any $x \in R$, return in R while always staying in S.

Basic idea:

- Generate a covering of R
- Look for patterns (input sequences) mapping the tiles into R while always staying in S
- \blacksquare If it fails, generate another covering.

Limits

- \blacksquare Requires the computation of the reachable set
	- unknown in general
	- \blacksquare can be approximated using numerical schemes and/or strong hypotheses
- \blacksquare High computational complexity (curse of dimensionality):
	- m covering sets, patterns of length K, N switched modes \Rightarrow cost in $O(mN^K)$
	- using a bisection heuristics of depth D in dimension n \Rightarrow cost in $O(2^{nD}N^{K})$

We propose:

- \blacksquare Handling nonlinear dynamics without strong hypotheses with guaranteed numerical schemes
- **Handling higher dimensions using compositionality**
- Synthesizing controllers for PDEs using Model Order Reduction

Outline

Validated simulation

DynIBEX [Chapoutot, Alexandre dit Sandretto, 2016]

Runge-Kutta numerical scheme:

- Computation of a sequence of approximations (t_n, X_n) of the solution $X(t; X_0)$
- \blacksquare X_i computed with the previous step: $X_i = h(t_{i-1}, X_{i-1})$

Validated simulation

DynIBEX [Chapoutot, Alexandre dit Sandretto, 2016]

Runge-Kutta numerical scheme:

- Computation of a sequence of approximations (t_n, X_n) of the solution $X(t; X_0)$
- \blacksquare X_i computed with the previous step: $X_i = h(t_{i-1}, X_{i-1})$

Making it guaranteed:

 \blacksquare Enclose solutions (using Picard-Linedelöf operator and Banach's theorem) on $[t_{n-1}, t_n]$

Validated simulation

DynIBEX [Chapoutot, Alexandre dit Sandretto, 2016]

Runge-Kutta numerical scheme:

- Computation of a sequence of approximations (t_n, X_n) of the solution $X(t; X_0)$
- \blacksquare X_i computed with the previous step: $X_i = h(t_{i-1}, X_{i-1})$

Making it guaranteed:

- \blacksquare Enclose solutions (using Picard-Linedelöf operator and Banach's theorem) on $[t_{n-1}, t_n]$
- \blacksquare Tighten the error $||x_n - x(t_n; x_{n-1})||$

Illustration: a path planning problem [Aström, Murray, 2010]

$$
\dot{x} = v_0 \frac{\cos(\alpha + \theta)}{\cos(\alpha)}
$$
\n
$$
\dot{y} = v_0 \frac{\sin(\alpha + \theta)}{\cos(\alpha)}
$$
\n
$$
\dot{\theta} = \frac{v_0}{b} \tan(\delta)
$$

Renewing the Euler scheme with the OSL property

(H0) (Lipschitz): for all $j \in U$, there exists a constant $L_i > 0$ such that:

 $||f_i(y) - f_i(x)|| < L$; $||y - x||$ ∀x, $y \in S$.

 $(H1)$ (One-sided Lipschitz/Strong monotony): for all $j \in U$, there exists a constant $\lambda_i \in \mathbb{R}$ such that

$$
\langle f_j(y)-f_j(x),y-x\rangle\leq \lambda_j\,\|y-x\|^2\quad\forall x,y\in\mathcal{T},
$$

Let us define the constants: C_i for all $i \in U$:

$$
C_j = \sup_{x \in S} L_j ||f_j(x)|| \text{ for all } j \in U.
$$

NB: constants computed by constrained optimization.

Main result

Theorem

Given a sampled switched system satisfying (H0-H1), consider a point \tilde{x}^0 and a positive real $\delta.$ We have, for all $x^0\in B(\tilde x^0, \delta)$, $t\in [0,\tau]$ and $j\in U.$ $\phi_j(t; x^0) \in B(\tilde{\phi}_j(t; \tilde{x}^0), \delta_j(t)).$ with

■ if
$$
\lambda_j < 0
$$
: $\delta_j(t) = \left(\delta^2 e^{\lambda_j t} + \frac{C_j^2}{\lambda_j^2} \left(t^2 + \frac{2t}{\lambda_j} + \frac{2}{\lambda_j^2} (1 - e^{\lambda_j t})\right)\right)^{\frac{1}{2}}$
\n■ if $\lambda_j = 0$: $\delta_j(t) = \left(\delta^2 e^t + C_j^2 (-t^2 - 2t + 2(e^t - 1)))^{\frac{1}{2}}$
\n■ if $\lambda_j > 0$: $\delta_j(t) = \left(\delta^2 e^{3\lambda_j t} + \frac{C_j^2}{3\lambda_j^2} \left(-t^2 - \frac{2t}{3\lambda_j} + \frac{2}{9\lambda_j^2} (e^{3\lambda_j t} - 1)\right)\right)^{\frac{1}{2}}$

Application to guaranteed integration

Control synthesis

Validated simulation vs Euler

Building ventilation

[Meyer, Nazarpour, Girard, Witrant, 2014]

Dynamics of a four-room apartment:

$$
\frac{dT_i}{dt} = \sum_{j \in \mathcal{N}^*} a_{ij} (T_j - T_i) + \delta_{s_i} b_i (T_{s_i}^4 - T_i^4) + c_i \max\left(0, \frac{V_i - V_i^*}{\bar{V}_i - V_i^*}\right) (T_u - T_i).
$$

 $\mathcal{N}^* = \{1, 2, 3, 4, u, o, c\}$ Control inputs: V_1 and V_4 can take the values 0V or 3.5V, and V_2 and V_3 can take the values 0V or 3V \Rightarrow 16 switching modes

Building ventilation

Building ventilation

Outline

 $x_1(t + 1) = f_1(x_1(t), x_2(t), u_1)$ $x_2(t + 1) = f_2(x_1(t), x_2(t), u_2)$

Target zone: $R = R_1 \times R_2$

R

 $R + a +$

 $x_1(t + 1) = f_1(x_1(t), x_2(t), u_1)$ $x_2(t + 1) = f_2(x_1(t), x_2(t), u_2)$ Target zone: $R = R_1 \times R_2$ $X \subset R + a$ $X^+ = f(X, \begin{pmatrix} u_1 \\ u_2 \end{pmatrix})$ $\Big)$) $\subset R + a + \varepsilon$ u_2 $X^{++} = f(X^+, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix})$ $)$ \subset R $V₂$ $R + a$ Pattern $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ $\bigg)$, $\bigg(\frac{v_1}{v_1} \bigg)$ $\big)$ depends on X

 u_2

 $V₂$

 \overline{u}

 \mathfrak{u}

 $x_1(t + 1) = f_1(x_1(t), x_2(t), u_1)$ $x_2(t + 1) = f_2(x_1(t), x_2(t), u_2)$

Target zone: $R = R_1 \times R_2$

 $X_1 \subset R_1 + a$ $X_1^+ = f_1(X_1, R_2 + a, u_1) \subset R_1 + a + \varepsilon$ $X_1^{++} = f_1(X_1^+, R_2 + a + \varepsilon, v_1) \subset R_1$

Pattern $u_1 \cdot v_1$ depends only on X_1

 $x_1(t + 1) = f_1(x_1(t), x_2(t), u_1)$ $x_2(t + 1) = f_2(x_1(t), x_2(t), u_2)$

Target zone: $R = R_1 \times R_2$

- $X_2 \subset R_2 + a$
- $X_2^+ = f_2(R_1 + a, X_2, u_2) \in R_2 + a + \varepsilon$

$$
X_2^{++} = f_2(R_1 + a + \varepsilon, X_2^+, v_2) \in R_2
$$

$$
\blacksquare
$$
 Pattern $u_2 \cdot v_2$ depends only on X_2

Seluxit case study

Kim G. Larsen, Marius Mikučionis, Marco Muniz, Jiri Srba, Jakob H. Taankvist. Online and Compositional Learning of Controllers with Application to Floor Heating. Tools and Algorithms for Construction and Analysis of Systems 2016.

Seluxit case study

Kim G. Larsen, Marius Mikučionis, Marco Muniz, Jiri Srba, Jakob H. Taankvist. Online and Compositional Learning of Controllers with Application to Floor Heating. Tools and Algorithms for Construction and Analysis of Systems 2016.

System dynamics:

$$
\frac{d}{dt}T_i(t) = \sum_{j=1}^n A_{i,j}^d (T_j(t) - T_i(t)) + B_i(T_{env}(t) - T_i(t)) + H_{i,j} \cdot v_j
$$

- System of dimension 11
- 2^{11} combinations of v_j (not all admissible, constraint on the number of open valves)
- **Pipes heating a room may influence other rooms**
- Doors opening and closing (here: average between open and closed)
- Varying external temperature (here: $T_{env} = 10^{\circ} C$)
- \blacksquare Measures and switching every 15 minutes

Seluxit case study, guaranteed reachability and stability

Decomposition in $5 + 6$ rooms (cf. [Larsen et al., TACAS 2016], thanks to the Aalborg team for the simulator)

Simulation of the Seluxit case study plotted with time (in min) for $T_{\text{env}} = 10^{\circ} C$.

Perturbed Euler scheme

Additional hypothesis on the dynamics: (H_W) : (Robustly OSL) $\exists \lambda_i \in \mathbb{R}$ and $\gamma_i \in \mathbb{R}_{\geq 0}$ s.t.

Perturbed Euler scheme

Additional hypothesis on the dynamics: (H_W) : (Robustly OSL) $\exists \lambda_i \in \mathbb{R}$ and $\gamma_i \in \mathbb{R}_{\geq 0}$ s.t.

 $\forall x, x' \in \mathcal{T}, \, \forall w, w' \in W$ $\langle f_j(x, w) - f_j(x', w'), x - x' \rangle \leq \lambda_j ||x - x'||^2 + \gamma_j ||x - x'|| ||w - w'||.$

NB: λ_i and γ_i can be computed with constrained optimization algorithms. NB2: This notion is close to incremental input-to-state stability [Angeli].

Control of Partial Differential Equations

Described by the differential equation:

 $\int \dot{x}(t) = Ax(t) + Bu(t)$ $y(t) = Cx(t)$

Described by the differential equation:

 $\int \dot{x}(t) = Ax(t) + Bu(t)$ $y(t) = Cx(t)$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$ output
- $u \in \mathbb{R}^p$: control input, takes a finite number of values (modes)
- A, B, C : matrices of appropriate dimensions

Described by the differential equation:

 $\int \dot{x}(t) = Ax(t) + Bu(t)$ $y(t) = Cx(t)$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$ output
- $u \in \mathbb{R}^p$: control input, takes a finite number of values (modes)
- A, B, C : matrices of appropriate dimensions

If Idea: impose the right $u(t)$ such that x and y verify some properties (stability, reachability...)

Described by the differential equation:

 $\int \dot{x}(t) = Ax(t) + Bu(t)$ $y(t) = Cx(t)$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$ output
- $u \in \mathbb{R}^p$: control input, takes a finite number of values (modes)
- A, B, C : matrices of appropriate dimensions
- **If** Idea: impose the right $u(t)$ such that x and y verify some properties (stability, reachability...)

Objectives:

- 1 x-stabilization: make all the state trajectories starting in a compact interest set $R_x \subset \mathbb{R}^n$ return to R_x ;
- 2 y-convergence: send the output of all the trajectories starting in R_{x} into an objective set $R_{y} \subset \mathbb{R}^{m}$;

Described by the differential equation:

 $\int \dot{x}(t) = Ax(t) + Bu(t)$ $y(t) = Cx(t)$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$ output
- $u \in \mathbb{R}^p$: control input, takes a finite number of values (modes)
- A, B, C : matrices of appropriate dimensions
- **If** Idea: impose the right $u(t)$ such that x and y verify some properties (stability, reachability...)

Objectives:

- 1 x-stabilization: make all the state trajectories starting in a compact interest set $R_x \subset \mathbb{R}^n$ return to R_x ;
- 2 y-convergence: send the output of all the trajectories starting in R_x into an objective set $R_{y} \subset \mathbb{R}^{m}$;
- **Constraint:** x of "high" dimension.

Dealing with high dimensionality : model reduction

Dealing with high dimensionality : model reduction

Application

Vibration (online) control of a cantilever beam: $n = 120$ and $n_r = 4$

Application

Vibration (online) control of a cantilever beam: $n = 120$ and $n_r = 4$

Case of PDE problems

Difficulty:

- The problem becomes infinite-dimensional;
- Even spatially discretized, the *curse of dimensionality* makes the former approaches (bisection, ball overlapping, ...) irrelevant.

 \implies requires model order reduction (MOR)

Pb of study: $(ODE + 1D$ heat eq) with boundary control

$$
\frac{d\xi}{dt} = A_{\sigma}\xi + \mathbf{b}_{\sigma}, \quad t > 0,
$$
\n
$$
\frac{\partial u}{\partial t} - \nabla \cdot (\kappa(.)\nabla u) = f \quad \text{in } \Omega \times (0, +\infty),
$$
\n
$$
u(0, t) = \xi_1(t), \quad u(L, t) = \xi_2(t), \quad \text{for all } t > 0,
$$
\n
$$
u(., t = 0) = u^0
$$
\n
$$
a_1(t) + \n\begin{matrix} 1 & \text{if } v(x, t) \\ v(x, t) & v(x, t) \\ 0 & 1 \end{matrix}
$$

Use of 4 constant control modes:

$$
\mathbf{b}_1 = (1,1)^T, \mathbf{b}_2 = (-1,-1)^T, \mathbf{b}_3 = (-1,1)^T, \mathbf{b}_4 = (1,-1)^T.
$$

Control objective:

diam.

$$
\xi(t)\in R\quad\text{and}\quad \|u(.,t)-u^\infty\|_{L^2(0,1)}\leq\rho\quad\text{ for all }t>0.
$$

Transformation of the problem

Denoting by $u_q = u_q(.,t)$ the solution of the quasi-static problem at each time t:

$$
-\nabla \cdot (\kappa(.)\nabla u_q) = f + \nabla \cdot (\kappa(.)\nabla u^{\infty}) \text{ in } \Omega,
$$

$$
u_q(0, t) = \xi_1(t) - \xi_1^{\infty},
$$

$$
u_q(L, t) = \xi_2(t) - \xi_2^{\infty},
$$

one can express the solution u as the sum of u^{∞} , u_q and a function ψ , i.e.

$$
u(.,t) = u^{\infty}(.) + u_q(.,t) + \psi(.,t)
$$

where $\psi(.,t)$ is solution of the heat problem with homogeneous Dirichlet boundary conditions

Reduced order problem

Look for a low dimensional approximation $\tilde{\psi}$ of ψ :

$$
\tilde{\psi}(x,t)=\sum_{k=1}^K \tilde{\beta}_k(t)\varphi^k(x)
$$

with a reduced basis $\{\varphi^k\}_{k=1,...,K}$ assumed to be orthonormal in $L^2(\Omega).$ Then

$$
\|\tilde{\psi}(.,t)\|_{L^2(\Omega)}=\|\tilde{\beta}(t)\|_{2,{\mathbb R}^K}.
$$

By the triangular inequality we can write

$$
\begin{array}{rcl}\|\psi(.,t)\|_{L^2(\Omega)} & \leq & \|\psi(.,t)-\tilde{\psi}(.,t)\|_{L^2(\Omega)}+\|\tilde{\psi}(.,t)\|_{L^2(\Omega)}\\ & \leq & \|\psi(.,t)-\tilde{\psi}(.,t)\|_{L^2(\Omega)}+\|\tilde{\beta}(t)\|_2.\end{array}
$$

Reduced order problem

Additional assumption (can be ensured by a proper construction of the reduced basis):

 $\|\psi(.,t)-\tilde{\psi}(.,t)\|_{L^2(\Omega)}\leq \mu\,\|\psi^0-\tilde{\psi}^0\|_{L^2(\Omega)}\quad \forall t\in[0,\tau]$

Then:

$$
C||f + \nabla \cdot (\kappa(.)\nabla u^{\infty})||_{L^2(\Omega)} + L||\xi(t) - \xi^{\infty}||_{\infty} +
$$

$$
||\tilde{\beta}(t)||_2 + \mu ||\psi^0 - \tilde{\psi}^0||_{L^2(\Omega)} \leq \rho.
$$

And finally:

Global stability requirement

$$
C \left\|f + \nabla \cdot (\kappa(.)\nabla u^{\infty})\right\|_{L^{2}(\Omega)} + L \left\|\xi(t) - \xi^{\infty}\right\|_{\infty} +
$$

$$
\|\tilde{\beta}(t)\|_{2} + \mu \|\psi^{0} - \pi^{K}\psi^{0}\|_{L^{2}(\Omega)} + \mu \|\beta^{0} - \tilde{\beta}^{0}\|_{2} \leq \rho.
$$

Numerical experiments

$$
\frac{d\mathbf{a}}{dt} = \mathbf{b}_{\sigma}, \quad \mathbf{b}_{\sigma} \in \mathbb{R}^2, \ t > 0,
$$

\n
$$
\alpha \partial_t v - \partial_{xx}^2 v = 0 \quad \text{in } (0, 1) \times (0, +\infty),
$$

\n
$$
v(0, t) = a_1(t), \quad v(1, t) = a_2(t), \quad t > 0,
$$

\n
$$
v(., 0) = v_0
$$

 $K = 4$ (reduced-order space of dimension 2+4=6)

max switching sequence length $= 8$

- Offline step: Overlapping of the stability domain by $4^6 = 4096$ balls, computed in less than 20 mins on a laptop
- Guaranteed control verified

Guaranteed control 000 00000 -ooo

Reachability analysis 000000 \circ

Distributed synthesis 00000

ROM and PDEs 000 00000000

Control of Partial Differential Equations

Numerical experiments (2)

Figure: Controlled discrete solution $t \mapsto v(., t)$.

Conclusions and perspectives

Conclusions:

- Guaranteed control of nonlinear switched systems using guaranteed RK4/Euler
- Renewal of the Euler scheme using OSL property
- Compositional synthesis allowing to handle higher dimensions
- ■ Control of PDEs made possible with Model Order Reduction and proper transformation of the problem

Conclusions and perspectives

Conclusions:

- Guaranteed control of nonlinear switched systems using guaranteed RK4/Euler
- Renewal of the Euler scheme using OSL property
- Compositional synthesis allowing to handle higher dimensions
- Control of PDEs made possible with Model Order Reduction and proper transformation of the problem

Perspectives:

- Stochastic systems using Euler
- Would the OSL property be relevant on other numerical schemes?
- Testing on real PDE case studies
- ■ Coupling of domain decomposition methods and compositional synthesis